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String Topology

String topology studies algebraic structures on H∗(LX ).
(LX = map(S1,X ))

Theorem (Chas–Sullivan 1999)

Suppose Md is a closed manifold. Then H∗+d (LM) is a BV
algebra.

Theorem (Godin 2007)

Suppose Md is a closed manifold. Then H∗(LM) is the value on
S1 of a degree d Homological Conformal Field Theory (HCFT).
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Definition of HCFT

Rough Definition

An HCFT F∗ of degree d is an assignment(
1-manifold X

)
7→

(
graded vector space F∗(X )

)
(

cobordism
Σ: X → Y

)
7→

(
H∗(BDiff(Σ))⊗ F∗(X )→ F∗+dχ(Σ,X)(Y )

)
compatible with disjoint unions and composition of cobordisms.

In particular, the generator of H0(BDiff(Σ)) induces an
operation

F(Σ): F∗(X )→ F∗+shift(Y ).

F
( )

and F
( )

and make F∗(S1) into an algebra and
a coalgebra.
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String Topology of BG

Theorem (Godin 2007)

Suppose M is a closed manifold. Then H∗(LM) is the value on
S1 an HCFT of degree dim(M).

Theorem (Chataur and Menichi 2007)

Suppose G is a compact Lie group. Then H∗(LBG) is the value
on S1 an HCFT of degree −dim(G).

As stated, the results seem exactly analogous. . .
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Comparison

. . . but in fact they differ significantly in details.

Godin C–M
type of cobordisms open–closed closed only
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Closed and Open–Closed Cobordisms

Closed: incoming and
outgoing boundaries consist of
circles (“closed strings”)

F∗(S1)

Open–closed: also allow
intervals (“open strings”) as
incoming and outgoing
boundaries

F∗(S1) and F∗(I)
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Comparison (continued)

Godin C–M
type of cobordisms open–closed closed only

unit for F∗(S1) 3 7

counit for F∗(S1) 7 7

unit for F∗(I ) 3 n/a
counit for F∗(I ) 3 n/a
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First Theorem

Here is Chataur and Menichi’s result again:

Theorem (Chataur and Menichi 2007)

Suppose G is a compact Lie group. Then H∗(LBG) is the value
on S1 an HCFT of degree −dim(G).

Our first theorem is similar:

Theorem (Hepworth and L)

Suppose G is a compact Lie group. Then H∗(LBG) is the value
on S1 an HCFT of degree −dim(G).
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Comparison

The HCFT we construct extends Chataur and Menichi’s HCFT.

Godin C–M H–L
type of cobordisms open–closed closed only open–closed

unit for F∗(S1) 3 7 7

counit for F∗(S1) 7 7 3

unit for F∗(I ) 3 n/a 7

counit for F∗(I ) 3 n/a 3

Q: Is it possible to remove any of the 7’s in the H–L-column?
A: No. “Closest possible analogue to Godin’s theory.”
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Part 2: Beyond HCFTs

Idea: instead of surfaces and diffeomorphisms, work with
homotopy graphs and homotopy equivalences.
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H-Graphs and H-Graph Cobordisms

Work towards the definition a novel kind of field theory –
“A Homological H-Graph Field Theory”

Definition
An h-graph X is a space homotopy equivalent to a finite graph.

Examples: S1, S1 ∨ S1, I, connected compact surfaces with
non-empty boundary.

Definition
An h-graph cobordism S : X → Y is a diagram X ↪→ S ←↩ Y of
h-graphs satisfying certain conditions.

Example: An ordinary cobordism Σ: X → Y between
1-manifolds with the property that all components of Σ meet X .
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Definition of HHGFT

For an h-graph cobordism S : X → Y , denote

hAut(S) = {homotopy equivalences f : S → S s.t. f |X qY = id}

Rough Definition

A Homological Conformal Field Theory (HCFT) F∗ of degree d
is an assignment(

1-manifold X
)
7→

(
graded vector space F∗(X )

)
(

cobordism
Σ: X → Y

)
7→

(
H∗(BDiff(Σ))⊗ F∗(X )→ F∗+dχ(Σ,X)(Y )

)
compatible with disjoint unions and composition of cobordisms.
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Second Theorem

An HHGFT restricts to an HCFT.

Theorem (Hepworth and L)
The HCFT from our first theorem extends to an HHGFT.
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Some Consequences and Benefits

New cobordisms new operations
Example:

: S1 → I  new map F
( )

: F∗(S1)→ F∗(I )

New factorizations of existing cobordisms
Example:

= ◦

Operations parametrized by homologies of automorphism
groups of free groups with boundaries (as well as by
homologies of mapping class groups of closed cobordisms)
. . .
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Other Examples of HHGFTs?

Are there other examples of HHGFTs?

Conjecture
Godin’s HCFT extends to an HHGFT.
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