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The main characters

G a compact connected Lie group of dimension d

Two associated objects:

1 finite group of Lie type G(Fq), Fq a finite field
2 free loop space LBG = map(S1,BG)

These may seem disparate mathematical objects . . .
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The Tezuka conjecture

. . . but computations show their cohomologies frequently agree.

Let ` be a prime 6= char(Fq).

Conjecture (Tezuka)

H∗(G(Fq);F`) ≈ H∗(LBG;F`) when q ≡

{
1 mod ` (` odd)
1 mod 4 (` = 2)

Known to varying degrees of structure when
H∗(BG;F`) is polynomial
` = 2, G = Spin(n)

(Tezuka, Kishimoto–Kono, Kameko,. . . ).

Mysterious! No apparent structural connection between the two
sides. This talk: string topology provides such a connection!
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The module structure

Write H∗ := H∗+d . (Recall: d = dim(G).)

Theorem (Grodal–L)

H∗(G(Fq);F`) is a module over H∗(LBG;F`) when H∗(LBG;F`)
is equipped with a string topological multiplication.

No need to assume q ≡ 1 mod `, just ` 6= char(Fq).

A new approach to the Tezuka conjecture: show that the
module structure is free of rank 1 when the congruence
condition holds.

Theorem (Grodal–L)
The module structure is free of rank 1 when

H∗(BG;F`) is polynomial
` = 2, G = Spin(n)

whenever q ≡ 1 mod `.
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The construction I: a space of paths

First step: replace G(Fq) by a space of paths.

Definition
For X a space and σ : X → X a map, the homotopy fixed point
space of σ is X hσ := {α : I → X | α(1) = σα(0)}.

x
σ(x)α a point in X hσ

Theorem (Friedlander, Mislin, Quillen)

BG(Fq )̂` ' (BGˆ̀)hψq for ψq : BGˆ̀
'−−→ BGˆ̀ the q-th unstable

Adams operation.

Corollary

H∗(G(Fq);F`) ≈ H∗((BGˆ̀)hψq ;F`).

Also, H∗(LBG;F`) ≈ H∗(L(BGˆ̀);F`).
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The construction II: the product structure

Product on H∗(LBG;F`) = H∗+d (L(BGˆ̀);F`):
Have map ev0 : L(BGˆ̀)→ BGˆ̀, α 7→ α(0).
Diagram

L(BGˆ̀)× L(BGˆ̀) L(BGˆ̀)×BGˆ̀ L(BGˆ̀)
split
∗

oo concat

!
// L(BGˆ̀)

( x xα
,

x xβ
) ( x x xα β

)�oo � // ( x xα ? β
)

 product

◦ : H∗(L(BGˆ̀);F`)⊗H∗(L(BGˆ̀);F`)
concat! ◦ split∗◦×−−−−−−−−−−−→ H∗(L(BGˆ̀);F`)

associative, unital, H∗(BGˆ̀;F`)-bilinear
The map concat! shifts degree by d ;
H∗ = H∗+d ensures that ◦ is degree 0.
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The construction III: the module structure

Module structure on H∗(G(Fq);F`) = H∗((BGˆ̀)hψq ;F`):
Have map ev0 : (BGˆ̀)hψq → BGˆ̀, α 7→ α(0).
Diagram

L(BGˆ̀)× (BGˆ̀)hψq L(BGˆ̀)×BGˆ̀ (BGˆ̀)hψq
split
∗

oo concat

!
// (BGˆ̀)hψq

( x xα
,

x ψq(x)β
) ( x x ψq(x)α β

)�oo � // ( x ψq(x)α ? β
)

 module structure

◦ : H∗(L(BGˆ̀);F`)⊗H∗((BGˆ̀)hψq ;F`)
concat! ◦ split∗◦×−−−−−−−−−−−→ H∗((BGˆ̀)hψq ;F`)

H∗(BGˆ̀;F`)-bilinear
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Remarks

1 The key ingredient: the umkehr maps concat!. These
come from (almost) self-duality of L(BGˆ̀)→ BGˆ̀ and
(BGˆ̀)hψq → BGˆ̀ as fibrewise HF`-local spectra.

2 Can replace BGˆ̀ with any d-dimensional connected
`-compact group BX and ψq with any self map
σ : BX → BX :

Theorem (Grodal–L)

H∗(BX hσ;F`) is a module over H∗(LBX ;F`) when H∗(LBX ;F`)
is equipped with a string topological multiplication.

(Work in this generality from now on.)
3 The product on H∗(LBX ;F`) should agree with the one

previously constructed by Chataur and Menichi (with sign
corrections by Kuribayashi and Menichi).
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Detecting free of rank 1 modules

Write X := ΩBX (so X ' Gˆ̀ if BX = BGˆ̀).
Have fibre sequence

X i−→ BX hσ ev0−−−→ BX

Theorem (Grodal–L)

H∗(BX hσ;F`) is free of rank 1 as an H∗(LBX ;F`)-module iff
i∗[X ] 6= 0 ∈ Hd (BX hσ;F`) for a generator [X ] ∈ Hd (X ;F`) ≈ F`.

Translation to case BX = BGˆ̀, σ = ψq:

H∗(G(Fq);F`) is free of rank 1 as an H∗(LBG;F`)-module iff
i∗ : Hd (G;F`)→ Hd (G(Fq);F`) satisfies i∗[G] 6= 0.

Definition

Say BX hσ has an [X ]-fundamental class if i∗[X ] 6= 0.
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Spectral sequences

Next: discuss the proof of the detection theorem.

Theorem (Grodal–L)

H∗(BX hσ;F`) is free of rank 1 as an H∗(LBX ;F`)-module iff
BX hσ has an [X ]-fundamental class.

Key ingredient: module structure on Serre spectral sequences.

Theorem (Grodal–L)

Write E∗,∗ = E∗,∗+d .
(i) The shifted Serre spectral sequence E∗,∗r (LBX → BX ) is a

spectral sequence of algebras and converges to
H∗(LBX ;F`) as an algebra.

(ii) The Serre spectral sequence E∗,∗r (BX hσ → BX ) is a
module spectral sequence over E∗,∗r (LBX → BX ) and
converges to H∗(BX hσ;F`) as a module over H∗(LBX ;F`).
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Proving the detection theorem

Theorem (Grodal–L)

H∗(BX hσ;F`) is free of rank 1 as an H∗(LBX ;F`)-module iff
BX hσ has an [X ]-fundamental class.

Sketch of proof of “⇐=”.

∃[X ]-fundamental class =⇒ i∗ 6= 0 on Hd =⇒ i∗ 6= 0 on Hd =⇒
i∗(x) 6= 0 ∈ Hd (X ;F`) for some x ∈ Hd (BX hσ;F`). Now

z = 1⊗ i∗(x) ∈ H0(BX ;F`)⊗ Hd (X ;F`) = E0,d
2 (BX hσ)

is a permanent cycle. Get a map of spectral sequences

E∗,∗
r (LBX )

◦z−−→ E∗,∗+d
r (BX hσ).

Check: this is an iso on E2-pages, hence an iso of SS’s. Therefore
◦x : H∗(LBX ;F`)→ H∗+d (BX hσ;F`) is an iso, so x gives a basis.
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When is there a fundamental class? I

Theorem (Grodal–L)

BX hσ has an [X ]-fundamental class (and hence the module
structure is free of rank 1) when

H∗(BX ;F`) is polynomial and σ induces the identity on
H∗(BX ;F`)
` = 2, BX = BSpin(n)2̂ and σ = ψq for some q ∈ Z×2 .

Generalizes the theorem from earlier:

Theorem (Grodal–L)

H∗(G(Fq);F`) is free of rank 1 over H∗(LBG;F`) when
H∗(BG;F`) is polynomial
` = 2, G = Spin(n)

whenever q ≡ 1 mod `.
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When is there a fundamental class? II

Write Out(BX ) = {σ : BX '−−→ BX}/ '

Theorem (Grodal–L)
For any connected `-compact group BX, the set of
[σ] ∈ Out(BX ) for which BX hσ has an [X ]-fundamental class is
an uncountable subgroup of{

[σ] ∈ Out(BX ) | σ induces the identity on H∗(BX ;F`)
}
.

Optimistic conjecture

BX hσ has an [X ]-fundamental class iff σ induces the identity on
H∗(BX ;F`).
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How much structure can be preserved?

Suppose BX hσ has an [X ]-fundamental class.
Then ∃x ∈ Hd (BX hσ;F`) such that the map

H∗(LBX ;F`) ≈
◦x // H∗(BX hσ;F`)

is an isomorphism of H∗(BX ;F`)-modules

Question
How much more structure can the iso be made to preserve?

Note: the source and target are not isomorphic as rings in
general! (Example: ` = 2, BX = B(S1)2̂, σ = ψ3.)

Theorem (Grodal–L)
The element x can be chosen so that the iso preserves cup
products up to a filtration.
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Thank you!
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