INTRODUCTION TO TOPOLOGICAL K-THEORY EXERCISE SESSION 2 April 12, 2016

Problem 1. Let $M \to S^1$ be the Möbius line bundle

$$[0,1] \times \mathbf{R} / (0,v) \sim (1,-v) \longrightarrow [0,1] / 0 \sim 1, \quad [(t,v)] \longmapsto [t]$$

Let $f: S^1 \to S^1$ be the map $z \mapsto z^2$ (where we now interpret $S^1 \subset \mathbf{C}$). Show that the pullback f^*M is the trivial line bundle.

Problem 2. More generally, what is the pullback of M along the map $S^1 \to S^1$, $z \mapsto z^n$? **Problem 3.** Show that a general morphism

$$\begin{array}{c} E_1 \xrightarrow{f_E} E_2 \\ p_1 \downarrow & \downarrow p_2 \\ B_1 \xrightarrow{f_B} B_2 \end{array}$$

of vector bundles is Cartesian if and only if it has the following universal property: Given a vector bundle $p: E \to B_1$ and a general morphism $g: E \to E_2$ covering f_B , there is a unique morphism $h: E \to E_1$ of vector bundles over B such that $g = f_E \circ h$:

Problem 4. A vector subbundle of a vector bundle $p: E \to B$ is a subspace $E' \subset E$ which intersects each fibre of E in a vector subspace and which has the property that the restriction $p|: E' \to B$ is a vector bundle. What should one mean by the quotient vector bundle $E/E' \to B$? Give a definition and show that your definition does produce a vector bundle.

Problem 5. Let $\{U_{\alpha}\}$ be an open cover of a space B, and let

$$g_{\beta\alpha} \colon U_{\alpha} \cap U_{\beta} \longrightarrow GL_n(\mathbf{R})$$

be continuous functions satisfying the cocycle condition

$$g_{\gamma\beta}(x)g_{\beta\alpha}(x) = g_{\gamma\alpha}(x) \quad \forall x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$$

for all α , β and γ . Verify that the map $E(\{g_{\beta\alpha}\}) \to B$ defined in the lecture notes is an *n*-dimensional vector bundle. If the maps $g_{\beta\alpha}$ are the transition functions of a vector bundle $E \to B$, show that $E(\{g_{\beta\alpha}\})$ is isomorphic to E as a vector bundle over B.