INTRODUCTION TO TOPOLOGICAL K-THEORY EXERCISE SESSION 5

 $May \ 3,\ 2016$

Recall that the *direct limit topology* on the union $X = \bigcup_{n=1}^{\infty} X_n$ of an ascending sequence of spaces

$$X_1 \subset X_2 \subset X_3 \subset \cdots$$

is the topology where $U \subset X$ is open if and only if $U \cap X_n$ is open in X_n for all n (equivalently, $C \subset X$ is closed if and only if $C \cap X_n$ is closed in X_n for all n).

Problem 1. Show that the subspace topology on each $X_n \subset X$ induced by the direct limit topology on X agrees with the original topology on X_n .

Problem 2. For any space Y, show that a function $f: X \to Y$ is continuous with respect to the direct limit topology if and only if the restriction $f|: X_n \to Y$ is continuous for all n.

Problem 3. Equip X with the direct limit topology, and let $A \subset X$ be an open or closed subset. Show that the subspace topology on A agrees with the direct limit topology given by the sequence

$$A \cap X_1 \subset A \cap X_2 \subset A \cap X_3 \subset \cdots$$

Problem 4. Let *n* and *k* be non-negative integers. Show that the spaces $\operatorname{Gr}_n(\mathbb{F}^{n+k})$ and $\operatorname{Gr}_k(\mathbb{F}^{n+k})$ are homeomorphic.

Problem 5. Let $i: \operatorname{Gr}_k(\mathbb{F}^n) \to \operatorname{Gr}_k(\mathbb{F}^{n+q})$ be the inclusion and let $j: \operatorname{Gr}_k(\mathbb{F}^n) \to \operatorname{Gr}_{k+q}(\mathbb{F}^{n+q})$ be the map sending a vector space $V \in \operatorname{Gr}_k(\mathbb{F}^n)$ to the direct sum $V \oplus \mathbb{F}^q \subset \mathbb{F}^n \oplus \mathbb{F}^q = \mathbb{F}^{n+q}$. What are the pullbacks $i^* \gamma^k(\mathbb{F}^{n+q})$ and $j^* \gamma^{k+q}(\mathbb{F}^{n+q})$?

An *H*-space is a space X together with a point $e \in X$ and a map $m: X \times X \to X$ having the property that the two maps $m(e, -): X \to X$ and $m(-, e): X \to X$ are homotopic to the identity map of X. The H-space is called *associative* if the composites $m \circ (m \times id_X)$ and $m \circ (id_X \times m)$ are homotopic maps $X \times X \times X \to X$.

Problem 6. Observe (or recall from earlier exercise) that tensor product of vector bundles makes $\operatorname{Vect}^1_{\mathbb{F}}(X)$ into a unital associative monoid (in fact, an abelian group). Use the homotopy classification of vector bundles to conclude that $\mathbb{R}P^{\infty}$ and $\mathbb{C}P^{\infty}$ admit the structure of associative H-spaces. Can you enrich these structures on $\mathbb{R}P^{\infty}$ and $\mathbb{C}P^{\infty}$ even further?