INTRODUCTION TO TOPOLOGICAL K-THEORY EXERCISE SESSION 7

May 24, 2016

Problem 1. Determine $\operatorname{Vect}^{n}_{\mathbf{R}}(S^{1})$ for all $n \geq 1$.

Problem 2. Let

$$D_{+}^{2} = \{(x_{1}, x_{2}, x_{3}) \in S^{2} : x_{3} \ge 0\}$$

and

$$D_{-}^{2} = \{ (x_{1}, x_{2}, x_{3}) \in S^{2} : x_{3} \le 0 \}$$

be the upper and lower hemispheres of the sphere S^2 , respectively, and observe that $D^2_+ \cap D^2_- = S^1$. For $x, y \in S^2$ with $y \neq -x$, write R(x, y) for the rotation of \mathbf{R}^3 which sends x to y and fixes the subspace perpendicular to x and y. Let e_1 , e_2 and e_3 be the standard basis vectors for \mathbf{R}^3 .

(a) Show that the tangent bundle TS^2 of S^2 can be obtained by the clutching construction applied to the trivial vector bundles $\varepsilon_{\pm}^2 = D_{\pm}^2 \times \mathbf{R}^2$ over D_{\pm}^2 and an isomorphism

$$\varphi \colon \varepsilon_+^2 | S^1 \xrightarrow{\approx} \varepsilon_-^2 | S^1$$

given by a continuous map $f: S^1 \to GL_2(\mathbf{R})$.

(b) Construct explicit trivializations

$$TS^2 | D^2_+ \xrightarrow{\approx} \varepsilon^2_+$$

in terms of the functions $x \mapsto R(x, \pm e_3)$.

(c) Use your work from part (b) to find an explicit formula for the clutching map $f: S^1 \to GL_2(\mathbf{R}).$

To each map $f: S^1 \to S^1$, one can associate an integer deg(f), the *degree* of f, which, intuitively speaking, counts how many times f(z) wraps around the circle as z goes around the circle once. A prototypical example of a map of degree n is the power map $z \mapsto z^n$. It is a basic result that two maps $f, g: S^1 \to S^1$ are homotopic if and only if $\deg(f) = \deg(g)$.

Problem 3. Recall from Problem 3.1 that tensor product of vector bundles makes $\operatorname{Vect}^{1}_{\mathbf{C}}(X)$ into a group. Determine the group $\operatorname{Vect}^{1}_{\mathbf{C}}(S^{2})$.

Problem 4. Determine $\operatorname{Vect}^2_{\mathbf{R}}(S^2)$.

The following problem gives an alternative construction of the Grothendieck group.

Problem 5. Let M be a commutative monoid with addition \oplus . Consider the quotient $\operatorname{Gr}'(M) = F/R$, where F is the free abelian group generated by the set M and R is the normal subgroup of F generated by all elements of the form $x \oplus y - x - y$ for $x, y \in M$. Show that $\operatorname{Gr}'(M)$ is isomorphic to the Grothendieck group $\operatorname{Gr}(M)$.