INTRODUCTION TO TOPOLOGICAL K-THEORY EXERCISE SESSION 11

June 21, 2016

Let X be a compact Hausdorff space. If $\zeta \to X$ is a complex vector bundle and u is an automorphism $\pi^*\zeta \xrightarrow{\approx} \pi^*\zeta$, write $[\zeta, u]$ for the vector bundle $\pi^*_0(\zeta) \cup_u \pi^*_\infty(\zeta)$ over $X \times S^2$. Here

$$\pi: X \times S^1 \longrightarrow X, \quad \pi_0: X \times D_0^2 \longrightarrow X \quad \text{and} \quad \pi_\infty: X \times D_\infty^2 \longrightarrow X$$

are the projections. By the analysis in Lecture 11, the line bundle $H \to S^2$ is isomorphic to $[\varepsilon_{pt}^1, z^{-1}]$. Recall the relation $H \oplus H \approx H^{\otimes 2} \oplus \varepsilon^1$.

The following problems are meant to help clarify the meaning of the decomposition $\zeta = (\zeta, p)_+ \oplus (\zeta, p)_-$ when p is a linear clutching function.

Problem 1. Suppose $\xi \to X \times S^2$ is isomorphic to $[\zeta, u]$. Show that for all $n \in \mathbb{Z}$, the vector bundle $[\zeta, uz^n]$ is isomorphic to $\xi \otimes \pi_{S^2}^*(H^{-n})$ where $\pi_{S^2} \colon X \times S^2 \to S^2$ is the projection. (Negative tensor powers of a line bundle should be interpreted as positive tensor powers of the dual line bundle.) Conclude that for a monomial clutching function az^n with a an automorphism of ζ , we have $[\zeta, az^n] = \pi_X^*(\zeta) \otimes \pi_{S^2}^*(H^{-n})$. Here $\pi_X \colon X \times S^2 \to X$ is the projection.

Problem 2. Let p(x, z) = a(x)z + b(x) be a linear clutching function for $\zeta \to X$. Show that

$$Q'_p(x) = \frac{1}{2\pi i} \int_{|z|=1} a(x) [a(x)z + b(x)]^{-1} dz$$

defines a projection operator on ζ such that $p(x, z)Q_p(x) = Q'_p(x)p(x, z)$ for all $x \in X$ and |z| = 1. (*Hint*: Use an identity proved in the lectures to show that

$$(aw+b)^{-1}a(az+b)^{-1} = (az+b)^{-1}a(aw+b)^{-1}$$

for $z \neq w$.)

Problem 3. Let $(\zeta, p)'_+ = \text{Im}(Q'_p)$ and $(\zeta, p)'_- = \text{Ker}(Q'_p)$. Then $\zeta = (\zeta, p)'_+ \oplus (\zeta, p)'_-$. Conclude from Problem 2 that p restricts to maps

$$p_+(-,z)\colon (\zeta,p)_+ \longrightarrow (\zeta,p)'_+ \text{ and } p_-(-,z)\colon (\zeta,p)_- \longrightarrow (\zeta,p)'_-.$$

Prove that $p_+(-, z)$ is an isomorphism for all $|z| \ge 1$ (including $z = \infty$) and $p_-(-, z)$ is an isomorphism for all $|z| \le 1$. (By the assertion that a linear clutching function cz + dis an isomorphism for $z = \infty$ we mean the assertion that c is an isomorphism.) *Hint*: Suppose w is such that p(x, w)v = 0 for some $v \in \zeta_x$. Then $|w| \ne 1$. Show that for |z| = 1, we have $(a(x)z + b(x))^{-1}a(x)v = (z - w)^{-1}v$, and deduce that

$$Q_p(x)v = \begin{cases} v & \text{if } |w| < 1\\ 0 & \text{if } |w| > 1 \end{cases}$$

Problem 4. Let $p_+ = a_+ z + b_+$ and $p_- = a_- z + b_-$ where p_+ and p_- are as in Problem 3. Construct a homotopy from p to $a_+ z \oplus b_-$ through linear clutching functions. Deduce that $[\zeta, p] \approx [(\zeta, p)_+, z] \oplus [(\zeta, p)_-, 1].$

Problem 5. Deduce from Problems 1 and 4 that

$$[\zeta, p] = (\zeta, p)_+ * (2 - H) + (\zeta, p)_- * 1 \in K(X \times S^2).$$