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Chapter 1

Introduction

The motivation for the mathematics in this thesis comes from the desire to con-

nect twisted equivariant K-groups Kτ
G(Gad) for a compact Lie group G to the string

topology of the classifying space BG. (Here Gad denotes the group G equipped

with the conjugation action.) An important result of Freed, Hopkins and Teleman

[FHT07b, FHT05, FHT03] relates these K-groups to the representation theory of the

loop group LG, including Verlinde algebras, making these K-groups very interesting

objects to study and the prospect of connecting them to string topology a tantalizing

one. As the Borel construction of Gad is homotopy equivalent to the free loop space

LBG, it does not seem far-fetched to expect that there exists such a connection.

The thesis has two parts. In the first part, consisting of Chapter 2, we prove a gen-

eralization of the Atiyah–Segal completion theorem [AS69] to twisted K-theory. This

is our Theorem 2. In an alternative formulation, the theorem provides a connection

between the twisted equivariant K-theory of a G-space X and the non-equivariant

K-theory of the Borel construction of X, and in this guise the theorem has been

successfully used by Kriz, Westerland and Levin [KWL09] to connect the K-groups

Kτ
G(Gad) to the Gruher–Salvatore string topology of BG [GS08]. Of course, Theo-

rem 2 is also of interest independent of this application: the untwisted Atiyah–Segal

completion theorem is one of the basic theorems in classical equivariant K-theory,

and in the twisted setting the twisted version should play a similarly fundamental

role.

1



2 CHAPTER 1. INTRODUCTION

The backdrop for the second part of the thesis is formed by two different families

of two-dimensional field theories: first, a family of field theories constructed by Freed,

Hopkins and Teleman [FHT07a] sending the circle to the groups Kτ
G(Gad); and second,

the Chataur–Menichi [CM07] string topology of BG, a family of field theories sending

the circle to the homology groups H∗(LBG; k), where k is a field. In both cases the

homotopy theory underlying the field theories is similar, and what we would like to

do is to make this similarity explicit by presenting a single construction that comes as

close as possible to capturing both kinds of field theories. We can state our motivating

conjecture as follows.

Conjecture 1. Let R be a commutative S-algebra. Then, given a piece of orientation

data we call a universal R-orientation (see Definition 37), there exists a non-unital,

non-counital Homological Conformal Field Theory taking values in the homotopy cat-

egory of R-modules and sending the circle to an R-module whose homotopy groups are

the twisted R-homology groups of LBG, with the twisting determined by the universal

R-orientation. Taking R to be the Eilenberg–Mac Lane spectrum Hk for a field k, a

suitable choice of universal Hk-orientation gives rise to Chataur and Menichi’s string

topology of BG, while taking R to be the complex K-theory spectrum K, we obtain

field theories related to the Freed–Hopkins–Teleman field theories.

In the second part of the thesis, we present work towards the construction of the

field theories of Conjecture 1. This is explicitly our subject in Chapter 5, where our

main result, Theorem 41, asserts the existence of a field-theory operation associated

with a single cobordism W . This operation arises from the correspondence diagram

map(∂0W,BG)← map(W,BG)→ map(∂1W,BG)

by making use of a pretransfer-type umkehr map induced by the first arrow. The

construction of such umkehr maps in the twisted setting is done in Chapter 4, where

the main result is Theorem 26, a slight partial generalization (from fiber bundles

to fibrations) of the Fiberwise Costenoble–Waner Duality Theorem of May and Sig-

urdsson ([MS06], Theorem 19.5.2). Our discussion in Chapters 4 and 5 draws very

heavily from parametrized homotopy theory, so in Chapter 3 we offer a review of
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parametrized homotopy theory, mainly relying on May and Sigurdsson’s monograph

[MS06]. While there are no new results in the chapter, we hope its inclusion will help

the reader previously unacquainted with parametrized homotopy theory to navigate

the exposition in Chapters 4 and 5.



Chapter 2

The Atiyah–Segal completion

theorem in twisted K-theory

2.1 Introduction

The aim of this chapter is to prove the following twisted analogue of the Atiyah–Segal

completion theorem [AS69].

Theorem 2. Let X be a finite G-CW complex, where G is a compact Lie group.

Then the projection π : EG×X → X induces an isomorphism

Kτ+∗
G (X)ÎG

≈−→ K
π∗(τ)+∗
G (EG×X)

for any twisting τ corresponding to an element of H1
G(X; Z/2)⊕H3

G(X; Z).

Here IG ⊂ R(G) is the augmentation ideal of the representation ring R(G) and (−)ÎG
indicates completion. The classical theorem is the case τ = 0. Theorem 2 generalizes

a result by C. Dwyer, who has proved the theorem in the case where G is finite and

the twisting τ is given by a cocycle of G [Dwy]. While versions of the theorem for

compact Lie groups have been known to experts (for example, such a theorem is used

in the proof of [FHT08], Proposition 3.11), to our knowledge no proof of the general

theorem appears in the current literature. Our goal is to fill in this gap.

4



2.2. A CONVENIENT COHOMOLOGY THEORY 5

We shall prove Theorem 2 in two stages. First we prove the theorem in the special

case of a twisting arising from a graded central extension

1→ T→ Gτ → G→ 1, ε : G→ Z/2.

For such twistings, twisted G-equivariant K-groups correspond to certain direct sum-

mands of untwisted Gτ -equivariant K-groups, and the Adams–Haeberly–Jackowski–

May argument contained in [AHJM88a] goes through with these summands to prove

the theorem in this case. It follows that the theorem holds when X is a point, and

the general theorem then follows by a Mayer–Vietoris argument.

As our definition of twisted K-theory, we use Freed, Hopkins and Teleman’s elab-

oration [FHT07b] of the Atiyah–Segal model developed in [AS04]. Thus for a G-space

X, the notation Kτ+∗
G (X) is a shorthand for Kτ+∗(X//G), where X//G is the quo-

tient groupoid of X. Of course, the completion theorem should remain true in any

reasonable alternative model for twisted equivariant K-theory as well.

The chapter is structured as follows. In Section 2.2 we describe a pro-group

valued variant of K-theory which we shall employ in Section 2.3 to handle the case

of a twisting given by a central extension. Section 2.4 then contains a proof of the

general theorem.

2.2 A convenient cohomology theory

We shall now describe a cohomology theory which will be used in the next section to

prove the completion theorem for twistings arising from a graded central extension.

Let

1→ C → G̃→ G→ 1

be a central extension of a compact Lie group G by a commutative compact Lie group

C, and let X be a finite G-CW complex. Via the map G̃ → G we can view X as a

G̃-space on which C acts trivially. The semigroup VectG̃(X) of isomorphism classes
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of G̃-equivariant vector bundles over X decomposes as a direct sum

VectG̃(X) =
⊕
π∈Ĉ

VectG̃(X)(π) (2.1)

where Ĉ denotes the set of isomorphism classes of irreducible representations of C, and

where VectG̃(X)(π) is the semigroup of isomorphism classes of those G̃-vector bundles

ξ over X with the property that the fibers of ξ are π-isotypical as representations of

C, that is, isomorphic to sums of copies of π. The decomposition (2.1) leads to a

decomposition

K∗
G̃

(X) =
⊕
π∈Ĉ

K∗
G̃

(X)(π) (2.2)

and similarly for reduced K-groups.1 Here K0
G̃

(X)(π) is the Grothendieck group

of VectG̃(X)(π), and Kq

G̃
(X)(π) for non-zero q is defined by using the suspension

isomorphism and the Bott periodicity map. By inspection and definition, the decom-

position (2.2) is compatible with G-equivariant maps of spaces, with the suspension

isomorphism, with the Thom isomorphism for G-equivariant vector bundles, and, as

a special case, with the Bott periodicity map. Thus for each π ∈ Ĉ, we can view

K∗
G̃

(−)(π) as a Z/2-graded cohomology theory defined on finite G-CW complexes and

taking values in graded R(G)-modules.

Although the decomposition (2.2) fails for infinite X in general, it is possible to

extend each one of the theories K∗
G̃

(−)(π) to infinite G-CW complexes by means

of suitable classifying spaces. However, since having the theories available for finite

complexes suffices for most of our purposes, we will not elaborate this point. Instead,

we point the reader to the proof of Proposition 3.5 in [FHT07b] for a description

of the appropriate classifying space when π is the defining presentation of the circle

group T, which is the only case where we will need to apply K∗
G̃

(−)(π) to an infinite

complex in the sequel.

Our interest in the groups K∗
G̃

(X)(π) is explained by the following proposition.

1In fact, tensor product makes K∗
G̃

(X) into a Ĉ-graded algebra where the modules K∗
G̃

(X)(π)
are the homogeneous parts. However, we shall not need this graded algebra structure.
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Recall that a graded central extension of a group G is a central extension of G together

with a homomorphism from G to Z/2.

Proposition 3 (A reformulation of Proposition 3.5 of [FHT07b]). Let G be a compact

Lie group, let X be a G-space, and let τ be the twisting given by a graded central

extension

1→ T→ Gτ → G→ 1, ε : G→ Z/2

of G by the circle group T. Let S1(ε) denote the one-point compactification of the 1-

dimensional representation of G given by (−1)ε. Then there is a natural isomorphism

Kτ+n
G (X) ≈ K̃n+1

Gτ (X+ ∧ S1(ε))(1)

where “1” refers to the defining representation of T.

The groups K∗
G̃

(X)(π) are not what we are going to use in the next section.

Instead, we need pro-group valued versions completed at the augmentation ideal.

(For background material on pro-groups, we refer the reader to [AHJM88b].) Given

an arbitrary G-CW complex X and an irreducible representation π of C, we let

K∗
G̃

(X)(π) denote the pro-R(G)-module

K∗
G̃

(X)(π) = {K∗
G̃

(Xα)(π)}α

where Xα runs over all finite G-CW subcomplexes of X and the structure maps of

the pro-system are those induced by inclusions between subcomplexes. The groups

of our interest are then given by the pro-R(G)-modules

K∗
G̃

(X)(π)ÎG = {K∗
G̃

(Xα)(π) / InG ·K∗G̃(Xα)(π)}α,n,

where Xα again runs over the finite G-subcomplexes of X, n runs over the natural

numbers, and the structure maps of the pro-system are the evident ones. We think of

K∗
G̃

(X)(π)ÎG as the completion of K∗
G̃

(X)(π) with respect to the augmentation ideal

IG. Reduced variants K̃∗
G̃

(X)(π) and K̃∗
G̃

(X)(π)ÎG for a based G-CW complex X are
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defined in a similar way using the reduced groups K̃∗
G̃

(Xα)(π), where Xα now runs

through the finite G-CW subcomplexes of X containing the base point. The crucial

feature of the groups K∗
G̃

(X)(π)ÎG for us is that they form a cohomology theory on

the category of G-CW complexes (and therefore, by G-CW approximation, on the

category of all G-spaces). Phrased in terms of the reduced groups, this means that

the following axioms hold.

1. (Homotopy invariance) If X and Y are based G-CW complexes and f, g : X →
Y are homotopic through based G-equivariant maps, then the induced maps

f ∗, g∗ : K̃∗
G̃

(Y )(π)ÎG → K̃∗
G̃

(X)(π)ÎG

are equal.

2. (Exactness) If X is a based G-CW complex and A is a subcomplex of X con-

taining the base point, then the sequence

K̃∗
G̃

(X/A)(π)ÎG → K̃∗
G̃

(X)(π)ÎG → K̃∗
G̃

(A)(π)ÎG

is pro-exact.

3. (Suspension) For each q, there exists a natural isomorphism

Σ : K̃q

G̃
(X)(π)ÎG ≈ K̃q+1

G̃
(ΣX)(π)ÎG

4. (Additivity) If X is the wedge sum of a family {Xi}i∈I of based G-CW com-

plexes, the inclusions Xi ↪→ X induce an isomorphism

K̃∗
G̃

(X)(π)ÎG
≈−→
∏
i∈I

K̃∗
G̃

(Xi)(π)ÎG

The only difficulties in verifying these properties arise from the exactness axiom.

Proposition 4. The functor K̃∗
G̃

(−)(π)ÎG satisfies the exactness axiom.
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Sketch of proof. As in [AHJM88b], because the ring R(G) is Noetherian (see [Seg68],

Corollary 3.3), the result follows from the Artin–Rees lemma once K̃∗
G̃

(Z)(π) is known

to be finitely generated as an R(G)-module for any finite based G-CW complex Z. We

shall prove that K̃∗
G̃

(Z)(π) is finitely generated by reduction to successively simpler

cases. Filtering Z by skeleta and using the wedge and suspension axioms, we see that

it is enough to consider the case where Z = G/H+ for some closed subgroup H of G.

Let H̃ denote the inverse image of H in G̃. Then H̃ is a central extension of H by

C, and we have G̃-equivariant isomorphisms

G/H ≈ (G̃/C)/(H̃/C) ≈ G̃/H̃.

The R(G)-module isomorphisms

K∗
G̃

(G/H) ≈ K∗
G̃

(G̃/H̃) ≈ K∗
H̃

(pt)

preserve the direct sum decomposition (2.2), whence we obtain an isomorphism

K∗
G̃

(G/H)(π) ≈ K∗
H̃

(pt)(π).

Here the latter group can be identified with the summandR(H̃)(π) ofR(H̃) generated

by those representations of H̃ which restrict to π-isotypical representations of C. The

R(G)-module structure on R(H̃)(π) arises from its R(H)-module structure via the

map R(G) → R(H), and since R(H) is finite over R(G) ([Seg68], Proposition 3.2),

we are reduced to showing that R(H̃)(π) is finite as an R(H)-module.

Now consider the restriction

R(H̃)→
∏
S

R(S) (2.3)

where the S runs through the conjugacy classes of Cartan subgroups of H̃ (conjugacy

classes of such subgroups are finite in number and each one of the subgroups is

closed, Abelian and contains the central subgroup C). This map is injective ([Seg68],
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Proposition 1.2), whence R(H̃)(π) is a subgroup of
∏

S R(S)(π). Therefore it is

enough to show that R(S)(π) is finite as an R(H)-module for each S. The R(H)-

module structure on R(S)(π) arises from its structure of an R(S/C)-module via the

map of representation rings induced by the inclusion S/C ↪→ H, and as R(S/C) is

finite over R(H), it is enough to prove that that R(S)(π) is finite over R(S/C).

We shall now show that R(S)(π) is in fact a free R(S/C)-module with one gen-

erator. To prove this, recall that for a compact Abelian Lie group A, tensor product

gives the set of irreducible representations Â the structure of a finitely generated

Abelian group, and that the representation ring of A is given by the group ring Z[Â].

Moreover, our exact sequence of compact Abelian groups

1→ C → S → S/C → 1

gives rise to an exact sequence

1→ Ŝ/C → Ŝ → Ĉ → 1.

From this it is clear that the summand R(S)(π) of R(S) = Z[Ŝ] is the subgroup freely

generated by members of the coset of Ŝ/C in Ŝ mapping to π in Ĉ, with the R(S/C)-

module structure arising from the action of Ŝ/C on the coset. Thus any representative

of the coset will form an R(S/C)-basis for R(S)(π), and we are done.

The following two lemmas point out further useful properties of the theories

K∗
G̃

(−)(π)ÎG .

Lemma 5. Let H be a closed subgroup of G, and let X be a based H-CW complex.

Then there is a natural isomorphism of pro-R(G)-modules

K̃∗
G̃

(G+ ∧H X)(π)ÎG ≈ K̃∗
H̃

(X)(π)ÎH ,

where H̃ denotes the inverse image of H in G̃.

Proof. Observe that the H-CW structure on X gives rise to a G-CW structure on

G+ ∧H X, and that as Xα runs over the finite H-CW subcomplexes of X, G+ ∧H Xα
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runs over the finite G-CW subcomplexes of G+ ∧H X. Now the lemma follows from

the G̃-equivariant isomorphism

G̃ ∧H̃ Xα ≈ G ∧H Xα;

from the change of groups isomorphism

K̃∗
G̃

(G̃ ∧H̃ Xα) ≈ K̃∗
H̃

(Xα);

from the compatibility of this isomorphism with the decomposition (2.2); and from

the fact that the IG-adic and IH-adic topologies on an R(H)-module coincide (see

[Seg68], Corollary 3.9).

Lemma 6. Let X be a free G-CW complex. Then there is a natural isomorphism

K∗
G̃

(X)(π)ÎG ≈ K∗
G̃

(X)(π).

Proof. (Compare with the proof of Proposition 4.3 in [AS69].) Let Xα be a finite

G-CW subcomplex of X. Since the action of G on X is free, we have an isomorphism

KG(Xα)
≈−→ K(Xα/G).

Pick a base point for Xα/G. Then the diagram

R(G)

��

// KG(Xα)
≈ // K(Xα/G)

��

Z Z

commutes, whence the composite of the maps in the top row sends IG into K̃(Xα/G).

However, since Xα/G is a finite CW-complex, the elements of K̃(Xα/G) are nilpotent.

Because R(G) is Noetherian, the ideal IG is finitely generated, and it follows that for

large enough n, the image of InG in KG(Xα) vanishes. Thus

InG ·K∗G̃(Xα)(π) = 0
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for large n, and therefore

K∗
G̃

(X)(π)ÎG = {K∗
G̃

(Xα)(π)/InG ·K∗G̃(Xα)(π)}α,n
≈ {K∗

G̃
(Xα)(π)}α

= K∗
G̃

(X)(π)

as claimed.

Remark 7. The main technical benefit of introducing the pro-group-valued theories

K∗
G̃

(−)(π) and K∗
G̃

(−)(π)ÎG is that they allow us to sidestep problems with exactness

that would otherwise complicate the proof. The source of these problems is the

failure of inverse limits to preserve exactness, as well as the failure of completion to

be exact for non-finitely generated modules. The idea of using pro-groups to prove

the completion theorem goes back to the original paper of Atiyah and Segal [AS69].

2.3 The case of a twisting arising from a graded

central extension

In this section we will prove Theorem 2 in the case where the twisting τ arises from

a central extension in the way explained in [FHT07b]. That is, we will prove the

following.

Theorem 8. Let X be a finite G-CW complex, where G is a compact Lie group.

Then the projection π : EG×X → X induces an isomorphism

Kτ+∗
G (X)ÎG

≈−→ K
π∗(τ)+∗
G (EG×X)

for any twisting τ arising from a graded central extension

1→ T→ Gτ → G→ 1, ε : G→ Z/2.
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Our argument for proving Theorem 8 is closely based on the one Adams, Hae-

berly, Jackowski and May present for proving a generalization of the Atiyah–Segal

completion theorem in the untwisted case [AHJM88a]. Their argument in turn builds

on ideas due to Carlsson [Car84]. As before, let

1→ C → G̃→ G→ 1

be a central extension of a compact Lie group G by a compact Lie group, and let π

be an irreducible representation of C. We shall derive Theorem 8 from the following

result.

Theorem 9. Suppose X1 and X2 are G-spaces, and let f : X1 → X2 be a G-

equivariant map which is a non-equivariant homotopy equivalence. Then the map

f ∗ : K∗
G̃

(X2)(π)ÎG → K∗
G̃

(X1)(π)ÎG

is an isomorphism.

Before proving Theorem 9, we explain how it implies Theorem 8.

Proof of Theorem 8 assuming Theorem 9. Let Z be a finite G-CW complex. By The-

orem 9, the projection map π : EG× Z → Z induces an isomorphism

K∗Gτ (Z)(1)ÎG
π∗−−→
≈

K∗Gτ (EG× Z)(1)ÎG . (2.4)

Since Z is finite, we have

K∗Gτ (Z)(1)ÎG = {K∗Gτ (Zα)(1)/InG ·K∗Gτ (Zα)(1)}α,n
= {K∗Gτ (Z)(1)/InG ·K∗Gτ (Z)(1)}n.

(2.5)

Fix a model for EG which is a countable ascending union of finite G-CW subcom-

plexes EGk, k ≥ 1; for example, we could take EG to be the iterated join construction

of Milnor and take EGk to be the k-fold join of G with itself. Then Lemma 6 and
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the finiteness of Z imply that

K∗Gτ (EG× Z)(1)ÎG = K∗Gτ (EG× Z)(1)

= {K∗Gτ (EGk × Z)(1)}k.
(2.6)

Thus applying the limit functor taking pro-R(G)-modules to R(G)-modules to the

isomorphism (2.4) gives us an isomorphism

K∗Gτ (Z)(1)ÎG
π∗−−−−−→
≈

lim←−
k

K∗Gτ (EGk × Z)(1). (2.7)

Using (2.6), (2.4) and (2.5), we see that inverse system {K∗Gτ (EGk × Z)(1)}k is

equivalent to one that satisfies the Mittag–Leffler condition, whence the lim1 error

terms vanish and the codomain in (2.7) is isomorphic to K∗Gτ (EG× Z)(1). Thus for

any finite G-CW complex Z, we have a natural isomorphism

K∗Gτ (Z)(1)ÎG
π∗−−−−−→
≈

K∗Gτ (EG× Z)(1).

Suppose now Z is a based finite G-CW complex. Then from the diagram

0 // K̃∗Gτ (Z)(1)ÎG
//

��

K∗Gτ (Z)(1)ÎG
//

≈

��

K∗Gτ (pt)(1)ÎG
//

≈

��

0

0 // K̃∗Gτ (EG+ ∧ Z)(1) // K∗Gτ (EG× Z)(1) // K∗Gτ (EG)(1) // 0

we see that there is an induced isomorphism

K̃∗Gτ (Z)(1)ÎG
π∗−−−−−→
≈

K̃∗Gτ (EG+ ∧ Z)(1).

The claim now follows by taking Z to be the space X+ ∧ S1(ε) and applying Propo-

sition 3.

The rest of this section is dedicated to the proof of Theorem 9. Let {Vi}i∈I be a set

of representatives for the isomorphism classes of the non-trivial irreducible complex
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representations of G. Then I is countable, the fixed-point subspace V G
i is zero for

each i ∈ I, and for every proper closed subgroup H of G, there is some i ∈ I such

that V H
i 6= 0. Let U be the direct sum of countably many copies of

⊕
i∈I Vi, and let

Y = colimV⊂U S
V

where the colimit is over all finite-dimensional G-subspaces of U and SV denotes the

one-point compactification of V . Pick a G-invariant inner product on U , and observe

that Y G is S0.

Lemma 10. The space Y is H-equivariantly contractible for any proper closed sub-

group H of G.

Proof. Since Y has the structure of an H-CW complex, it is enough to show that the

fixed point set Y K is weakly equivalent to a point for any subgroup K of H. Given any

finite-dimensional G-subspace V ⊂ U , we can find a finite-dimensional G-subspace

W ⊂ U such that V ⊂ W and (W − V )K 6= 0, where W − V denotes the orthogonal

complement of V in W . But then the inclusion SV ↪→ SW is K-equivariantly null-

homotopic, whence the map (SV )K ↪→ (SW )K is null-homotopic. Since Y K is given

by the union

Y K = colimV⊂U(SV )K ,

the claim follows.

Lemma 11. The pro-R(G)-module K̃G̃(Y )(π)ÎG is pro-zero.

Proof. For a finite-dimensional G-subspace V ⊂ U , let

λV ∈ K̃G(SV ) = K̃G̃(SV )(0) ⊂ K̃G̃(SV )

denote the equivariant Bott class, where “0” refers to the trivial representation of

C. Then by Bott periodicity, each element of K̃G̃(SV )(π) is uniquely expressible as a
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product xλV , where x ∈ K̃∗
G̃

(S0)(π). Suppose W ⊃ V . From the diagram

K̃∗
G̃

(SW−V )(π) //

∧λV≈
��

K̃G̃(S0)(π)

∧λV≈
��

K̃∗
G̃

(SW )(π) // K̃G̃(SV )(π)

it follows that the map

K̃∗
G̃

(SW )(π)→ K̃G̃(SV )(π)

sends xλW to xχW−V λV , where χW−V denotes the image of λW−V under the map

K̃∗G(SW−V )→ K̃G(S0)

induced by the inclusion S0 ↪→ SW−V . Since this map is non-equivariantly null-

homotopic, it follows from the diagram

K̃G(SW−V )

��

// K̃G(S0)

��

R(G)

��

K̃(SW−V ) // K̃(S0) Z

that χW−V ∈ IG. Thus if we choose W ⊂ U so that it is the direct sum of V with n

G-invariant subspaces of U , then the map

K̃∗G(SW )(π)/InG · K̃∗G(SW )(π)→ K̃∗G(SV )(π)/InG · K̃∗G(SV )(π)

is zero. It follows that for any fixed n the pro-R(G)-module

{K̃G̃(SV )/InG · K̃G̃(SV )}V

is pro-zero, and therefore so is

K̃G̃(Y )(π)ÎG = {K̃G̃(SV )/InG · K̃G̃(SV )}n,V = lim←−n{K̃G̃(SV )/InG · K̃G̃(SV )}V

where the inverse limit is taken in the category of pro-R(G)-modules.
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We are now ready to prove Theorem 9.

Proof of Theorem 9. It is enough to prove that K̃∗
G̃

(Z)(π)ÎG is pro-zero when Z is a

non-equivariantly contractible G-space; the claim then follows by taking Z to be the

mapping cone of f . We shall show that K̃∗
G̃

(Z)(π)ÎG = 0 for such Z by induction

on the subgroups of G, making use of the fact that any strictly descending chain of

closed subgroups of a Lie group is of finite length.

To start the induction, we observe that in the case G = {e} the claim follows from

the assumption that Z is non-equivariantly contractible. Assume inductively that

K̃∗
H̃

(Z)(π)ÎH = 0

for all proper closed subgroups H of G; here as before H̃ denotes the inverse image of

H in G̃. The inclusion of the fixed-point set Y G = S0 into Y gives a cofiber sequence

S0 → Y → Y/S0

whence we have a cofiber sequence

Z → Z ∧ Y → Z ∧ (Y/S0).

Thus to show that K̃∗
G̃

(Z)(π)ÎG = 0, it is enough to show that

K̃∗
G̃

(Z ∧ Y )(π)ÎG = 0

and

K̃∗
G̃

(Z ∧ (Y/S0))(π)ÎG = 0.

Let us first show that K̃∗
G̃

(Z ∧ Y )(π)ÎG = 0; we claim that in fact

K̃∗
G̃

(W ∧ Y )(π)ÎG = 0

for any based G-CW complex W . Observing that

K̃∗
G̃

(W ∧ Y )(π)ÎG = lim←−αK̃
∗
G̃

(Wα ∧ Y )(π)ÎG
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where Wα runs through all finite G-CW complexes of W , we see that it is enough to

consider the case where W is finite. Filtering W by skeleta and working inductively

reduces us to the case where W is of the form G/H+∧Sn for some n and some closed

subgroup H of G, and using the suspension axiom further reduces us to the case

W = G/H+. But now in the case H = G the claim follows from Lemma 11; and in

the case H � G, it follows from the change of groups isomorphism (Lemma 5)

K̃∗
G̃

(G/H+ ∧ Y )(π)ÎG ≈ K̃∗
H̃

(Y )(π)ÎH

together with Lemma 10.

It remains to show that K̃∗
G̃

(Z ∧ (Y/S0))(π)ÎG = 0. We shall show that in fact

K̃∗
G̃

(Z ∧W )(π)ÎG = 0

for any based G-CW complex W such that WG is a point. Arguing as above, we see

that it is enough to consider W of the form W = G/H+, where H now has to be a

proper closed subgroup of G. But in this case the claim follows from the change of

groups isomorphism (Lemma 5)

K̃∗
G̃

(Z ∧G/H+)(π)ÎG = K̃∗
H̃

(Z)(π)ÎH

and the inductive assumption.

2.4 The general case

In this section we finally prove Theorem 2 in full generality. We shall do so by

considering successively more general spaces, starting with the case X = pt and

proceeding by change of groups and Mayer–Vietoris arguments. Since in general

completion is exact only for finitely generated modules, along the way we check that

the twisted K-groups that enter the Mayer–Vietoris sequences are finitely generated

over R(G).
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Lemma 12. Theorem 2 holds and Kτ+∗
G (X) is finitely generated over R(G) when

X = pt.

Proof. By [FHT07b], Example 2.29, any twisting of a point arises from a graded cen-

tral extension. Thus Theorem 8 shows that Theorem 2 holds in this case. The claim

about finite generation follows from Proposition 3 and the proof of Proposition 4.

Lemma 13. Theorem 2 holds and Kτ+∗
G (X) is finitely generated over R(G) when

X = G/H, where H is a closed subgroup of G.

Proof. Notice that G/H = G ×H pt and that EG × G/H = G ×H EG. For any

H-space Z, we have a natural local equivalence of topological groupoids

Z//H → G×H Z//G

giving rise to a natural change of groups isomorphism

Kτ+∗
G (G×H Z)

≈−−−−→ Kτ+∗
H (Z). (2.8)

Consider the diagram

Kτ+∗
G (G/H)ÎG

��

// Kτ+∗
H (pt)ÎH

��

K
π∗(τ)+∗
G (EG×G/H) // K

π∗(τ)+∗
H (EG)

Here the bottom row is a change of groups isomorphism as in (2.8); the top row is an

isomorphism because of the isomorphism (2.8) and the fact that IH-adic and IG-adic

completions of an R(H)-module agree (see [Seg68], Corollary 3.9); and the vertical

map on the right is an isomorphism by Lemma 12 and the observation that EG is

a model for EH. Thus the map on the left is also an isomorphism, which shows

that Theorem 2 holds in this case. To see that Kτ+∗
G (G/H) is finitely generated as

an R(G)-module, observe that the isomorphism (2.8) and Lemma 12 imply that it is

finitely generated over R(H). The claim now follows from the fact that R(H) is finite

over R(G) (see [Seg68], Proposition 3.2).
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Lemma 14. Theorem 2 holds and Kτ+∗
G (X) is finitely generated over R(G) when X

is of the form X = G/H × Sn, n ≥ 0.

Proof. The case where n = 0 follows from Lemma 13 and the axiom of disjoint

unions. For n > 0, the claim follows inductively from the Mayer–Vietoris sequences

arising from the decomposition of Sn into upper and lower hemispheres Sn+ and Sn−.

Lemma 13 and the inductive assumption imply that all groups in the Mayer–Vietoris

sequence

· · · → Kτ+∗
G (G/H × Sn)→

→ Kτ+∗
G (G/H × Sn+)⊕Kτ+∗

G (G/H × Sn+)→

→ Kτ+∗
G (G/H × (Sn+ ∩ Sn−))→ · · · (2.9)

except Kτ+∗
G (G/H × Sn) are finitely generated over R(G), whence Kτ+∗

G (G/H × Sn)

must also be finitely generated, as claimed. It follows that the sequence obtained

from (2.9) by completion with respect to the augmentation ideal IG is exact. Now

the claim that Theorem 2 holds for the space G/H × Sn follows from Lemma 13 and

the inductive assumption by comparing the completed sequence to the Mayer–Vietoris

sequence of the pair

(EG×G/H × Sn+, EG×G/H × Sn−)

and applying the five lemma.

Theorem 2 is now contained in the following.

Theorem 15. Theorem 2 holds and Kτ+∗
G (X) is finitely generated over R(G) for any

finite G-CW complex X.

Proof. We proceed by induction on the number of cells in X. If X has no cells, that

is, if X is the empty G-space, the claim holds trivially. Assume inductively that the

claim holds for the space X, and consider the space Y = X ∪f (G/H ×Dn), where
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f : G/H × Sn−1 → X is an attaching map. Denote

Dn(r) = {x ∈ Rn : |x| ≤ r},

and let

Y1 = X ∪f (G/H × (Dn −Dn(1/3))) ⊂ Y

and

Y2 = Dn(2/3) ⊂ Y.

By Lemma 13, Lemma 14 and the inductive assumption, in the Mayer–Vietoris se-

quence

· · · // Kτ+∗
G (Y ) // Kτ+∗

G (Y1)⊕Kτ+∗
G (Y2) // Kτ+∗

G (Y1 ∩ Y2) // · · · (2.10)

all groups except possibly Kτ+∗
G (Y ) are finitely generated over R(G). It follows that

Kτ+∗
G (Y ) is also finitely generated, as claimed. We conclude that the top row in the

following diagram of Mayer–Vietoris sequences is exact.

··· // Kτ+∗
G (Y )̂IG

//

��

Kτ+∗
G (Y1 )̂IG

⊕Kτ+∗
G (Y2 )̂IG

//

≈

��

Kτ+∗
G (Y1∩Y2 )̂IG

≈

��

// ···

··· // Kτ+∗
G (EG×Y ) // Kτ+∗

G (EG×Y1)⊕Kτ+∗
G (EG×Y2) // Kτ+∗

G (EG×(Y1∩Y2)) // ···

In the diagram the vertical map on the right is an isomorphism by Lemma 14 and

the map in the middle is an isomorphism by Lemma 13 and the inductive assump-

tion. Thus the map on the left is an isomorphism by the five lemma, showing that

Theorem 2 holds for the space Y .

We conclude the chapter with a brief note on an application of Theorem 2. The

theorem implies that for a finite G-CW complex X and a twisting τ corresponding

to an element of

H1
G(X; Z/2)⊕H3

G(X; Z) = H1(EG×G X; Z/2)⊕H3
G(EG×G X; Z),
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there is an isomorphism

Kτ+∗
G (X)ÎG

≈−→ Kτ+∗(EG×G X).

Denoting by Gad the group G equipped with the conjugation action, and remembering

that the space EG×GGad is homotopy equivalent to the free loop space LBG, we in

particular obtain an isomorphism

Kτ+∗
G (Gad)ÎG

≈−→ Kτ+∗(LBG),

suggesting that Theorem 2 could be used to connect the twisted equivariant K-groups

Kτ+∗
G (Gad) to the string topology of BG. Indeed this is the case: Kriz, Westerland

and Levin have successfully used Theorem 2 to connect the groups Kτ+∗
G (Gad) with

the Gruher–Salvatore [GS08] string topology of BG. See [KWL09], Theorem 28.



Chapter 3

Background on parametrized

homotopy theory

In this chapter we will discuss background material on parametrized homotopy the-

ory needed in the sequel. Our aim is to be relatively brief and simply explain the

structures present in the parametrized context in enough detail to enable the reader

to follow the subsequent sections, while also fixing notation that will be used later.

In parametrized homotopy theory, for a given base space B, at least four different

categories of interest arise: the category of (based) spaces parametrized by B; the

category of spectra parametrized by B; and the respective homotopy categories of

the two. We will discuss the point-set level category of parametrized based spaces in

greatest detail, as this case is the most basic one and provides a good foundation for

intuition. As we will explain, much of the structure present in the other categories is

very similar.

For the most part of the discussion, we will follow May and Sigurdsson’s mono-

graph [MS06]. However, in the last section of the chapter we will also mention an

alternative∞-categorical approach to stable parametrized homotopy theory discussed

by Ando, Blumberg, Gepner, Hopkins and Rezk in [ABG+08] and [ABG10].

23
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3.1 Parametrized spaces and ex-spaces

The analogue of a space in parametrized homotopy theory is a space X over a space

B, that is, a continuous map of spaces

X
p−→ B.

We call X the total space and B the base space, and think of X as a family of spaces,

namely the fibers of p, parametrized by the points of B and glued together by the

topology of X. A map between parametrized spaces X
p−→ B and Y

q−→ B is simply a

map f : X → Y making the diagram

X
f

//

p
  

@@@@@@@@@ Y

q
��~~~~~~~~~

B

commutative. Similarly, the parametrized analogue of a space equipped with a base-

point is a space X
p−→ B over B equipped with a section s : B → X of the map p. We

call such an object an ex-space over B, and think of it as a family of based spaces,

the section giving a basepoint for each fiber of p. A map between ex-spaces over B is

a map of the underlying spaces over B respecting the sections. For technical reasons,

when considering spaces or ex-spaces over B, we will restrict the total space to be a

k-space and the base space to be a compactly generated space. We will denote the

categories of such spaces over B and ex-spaces over B by K /B and KB, respectively.

In what follows, we will mostly focus on the category of ex-spaces. Analogously to

the unparametrized case where we can easily turn an unbased space into a based one

by adding a disjoint basepoint, given a space X
p−→ B over B, we can form an ex-space

over B by adding a disjoint section. The total space of this construction is X q B,

and the projection and the section maps are the obvious ones. We will denote this

ex-space by (X, p)+

The category KB of ex-spaces over B admits smash products X∧B Y and internal

hom objects FB(X, Y ) making it into a closed symmetric monoidal category. Denoting
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by Zb the fiber of an ex-space Z ∈ KB over a point b ∈ B, these constructions satisfy

(X ∧B Y )b = Xb ∧ Yb and FB(X, Y )b = F (Xb, Yb).

The identity element for the smash product is the parametrized 0-sphere S0
B with

total space B qB, projection the folding map B qB → B and section the inclusion

of one copy of B.

In addition to the closed monoidal structure, the category KB has the structure

of a category enriched, tensored and cotensored over based spaces. If X, Y ∈ KB, we

topologize the set of maps KB(X, Y ) as a subspace of the space of all maps from the

total space of X to the total space of Y . The basepoint is given by the composite

of the projection X → B and the section B → Y . The tensors and cotensors can

be conveniently described in terms of the closed monoidal structure. Given a based

space K, equipping the product B×K with the obvious projection and section makes

it into an ex-space over B, and then the smash product of an ex-space X and the

space K and the ex-space of maps from K to X are given by

X ∧B K = X ∧B (B ×K) and FB(K,X) = FB(B ×K,X)

respectively.

An important feature of parametrized homotopy theory is the existence of various

base-change functors; it is from these functors and their relations to each other that

parametrized homotopy theory derives much of its force. Perhaps the most basic of

the base-change functors is the pullback functor: given a map f : A → B of base

spaces and an ex-space B
s−→ X

p−→ B over B, we can define an ex-space f ∗X over A

by the diagram

A
f

//

t

��

B

s

��

f ∗X //

q

��

X

p

��

A
f

// B
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where the bottom square is a pullback square and the section t is defined by the

pullback property and the requirement that qt is the identity map of A. The pullback

functor

f ∗ : KB → KA

thus defined admits both a left adjoint f! and a right adjoint f∗. If A → X → A is

an ex-space over A, then the ex-space f!X over B is defined by the diagram

A
f
//

��

B

��

X //

��

f!X

��

A
f
// B

where the top square is a pushout square and the projection map f!X → B is defined

by the pushout property and the requirement that the composite of the right-hand

vertical maps should be the identity map of B. The precise definition of the ex-space

f∗X is slightly more involved, and we will simply point out that the fiber of f∗X over

b ∈ B is the space of sections of the map Xb → Ab, where Ab and Xb denote the fibers

over b of the maps A
f−→ B and X → A

f−→ B, respectively.

Example 16. It is instructive to consider the behavior of the base-change functors

associated to the constant map r from a space B to the one-point space. An ex-space

over a point is simply a based space K, and the pullback r∗K is simply the ex-space

B × K over B we encountered previously when describing the tensor and cotensor

structure of KB. If X is an ex-space over B with section s, then r!X is the space

X/B obtained from X by collapsing the subspace sB of X into a point, while r∗X

is the space of sections for the projection map X → B, with the section s serving as

the basepoint.

Example 17. If ξ → B is a vector bundle, then forming the fiberwise one-point

compactification of ξ, we obtain a sphere bundle Sξ → B, which we make into an

ex-space by equipping it with the section B → Sξ given by the points at infinity. Now
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r!S
ξ is precisely the Thom space Bξ of ξ. Moreover, the space r!r

∗r!S
ξ is naturally

homeomorphic to Bξ ∧B+ (see (3.7) below), and the unit map

Bξ ≈ r!S
ξ r!(η)−−→ r!r

∗r!S
ξ ≈ Bξ ∧B+

corresponds to the Thom diagonal.

It can be shown that the for f : A → B, the pullback functor f ∗ : KB → KA

is closed symmetric monoidal in the sense that there exist coherent natural isomor-

phisms

f ∗S0
B ≈ S0

A, f ∗(X ∧B Y ) ≈ f ∗X ∧A f ∗Y and

f ∗FB(X, Y ) ≈ FA(f ∗X, f ∗Y ).

The natural isomorphisms in the following proposition then follow formally from the

results in [FHM03].

Proposition 18 (See [MS06], Proposition 2.2.2). Let f : A→ B be a map, and let X

be an ex-space over A and Y and Z be ex-spaces over B. Then we have the following

natural isomorphisms:

f ∗S0
B ≈ S0

A (3.1)

f ∗(Y ∧B Z) ≈ f ∗Y ∧A f ∗Z (3.2)

FB(Y, f∗X) ≈ f∗FA(f ∗Y,X) (3.3)

f ∗FB(Y, Z) ≈ FA(f ∗Y, f ∗Z) (3.4)

f!(f
∗Y ∧A X) ≈ Y ∧B f!X (3.5)

FB(f!X, Y ) ≈ f∗FA(X, f ∗Y ) (3.6)

In the above proposition, the isomorphisms (3.1), (3.2) and (3.4) are part of the

statement that f ∗ is closed symmetric monoidal, and (3.3) and (3.6) are adjunction

relations. The remaining isomorphism (3.5) is sometimes called the projection for-

mula. Observing that f!S
0
A ≈ (A, f)+, as a special cases of (3.5) and (3.6) we have



28 CHAPTER 3. PARAMETRIZED HOMOTOPY THEORY

the isomorphisms

f!f
∗Y ≈ Y ∧B (A, f)+ and f∗f

∗Y ≈ FB((A, f)+, Y ). (3.7)

The base-change functors also satisfy various commutation relations. The follow-

ing proposition is essentially [MS06], Proposition 2.2.11.

Proposition 19. Suppose we have a pullback square of spaces

C

i

��

g
// D

j

��

A
f
// B

Then the mates of the natural isomorphism i∗f ∗ ≈ g∗j∗ with respect to the adjunctions

(f!, f
∗) and (g!, g

∗) on one hand and with respect to the adjunctions (j∗, j∗) and (i∗, i∗)

on the other give natural isomorphisms

g!i
∗ ≈ j∗f! and f ∗j∗ ≈ i∗g

∗,

respectively.

More explicitly, the first isomorphism in the preceding proposition is given by the

composite

g!i
∗ → g!i

∗f ∗f! ≈ g!g
∗j∗f! → j∗f!

where the first map is given by the unit id→ f ∗f!, the second one by the isomorphism

i∗f ∗ ≈ g∗j∗ and the third by the counit g!g
∗ → id; while the second isomorphism in

the proposition is given by the composite

f ∗j∗ → i∗i
∗f ∗j∗ ≈ i∗g

∗j∗j∗ → i∗g
∗

where the first map is given by the unit id → i∗i
∗ and the last one by the counit

j∗j∗ → id. Of course, by symmetry we now have similar isomorphisms i!g
∗ ≈ f ∗j!

and j∗f∗ ≈ g∗i
∗ as well.
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We now turn attention to the structure present on the level of the homotopy

categories of ex-spaces, and assume that our base spaces are homotopy equivalent to

CW complexes in addition to being compactly generated. Each category KB admits

a Quillen model structure in which weak equivalences are the maps that are weak

equivalences between the total spaces; for an ex-space to be fibrant with respect to

these model structures it is sufficient that the projection of the ex-space is a Serre

fibration. With respect to these model structures, the base-change adjunctions (f!, f
∗)

are Quillen adjunctions, and they are Quillen equivalences when f is a homotopy

equivalence. Thus the adjoint pair (f!, f
∗) induces an adjoint pair of derived functors

between the homotopy categories, and we will continue to write f! and f ∗ for the

derived versions. There is also a derived version of the smash product ∧B which makes

the homotopy category Ho KB a symmetric monoidal category. We will continue to

denote this derived smash product by ∧B. The derived pullback functors f ∗ are then

symmetric monoidal functors.

In addition to the preceding structure, one can also construct derived versions

of the base-change functor f∗ and the mapping ex-spaces FB(X, Y ), but their con-

struction is more complicated. The constructions May and Sigurdsson present rely

on a version of the Brown representability theorem, and due to restrictions inherent

in this method, the derived f∗Y and FB(X, Y ) are defined only when the ex-space Y

is connected in the sense that all fibers of a fibrant replacement of Y are connected.

Restricting to connected ex-spaces where necessary, the analogues of Propositions 18

and 19 then continue to hold on the level of homotopy categories of ex-spaces if in

the case of Proposition 19 we make the additional assumption that either f or j is a

Serre fibration. See [MS06], Section 9.4.

One can show that a map f : X → Y between fibrant ex-spaces is a weak equiv-

alence precisely when it restricts to a weak equivalence between all fibers. Thus we

have the following criterion for a map of ex-spaces to be a weak equivalence, where

for a point b ∈ B we use b to denote the map from a one-point space into B whose

image is the point b.

Proposition 20. A map f : X → Y in Ho KB is an equivalence if and only if for
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every b ∈ B, the derived pullback of f

b∗(f) : b∗X → b∗Y

is an equivalence in Ho K∗.

3.2 Parametrized spectra

We now turn our attention to stable parametrized homotopy theory. We continue to

assume that our base spaces are homotopy equivalent to CW complexes. In simplest

terms, a parametrized (pre)spectrum X over a space B consists of a sequence of

ex-spaces X0, X1, . . . over B together with maps of ex-spaces

ΣBXi → Xi+1

where ΣB denotes fiberwise suspension. However, a great deal more care is required

to obtain a category of parametrized spectra with a well-behaved fiberwise smash

product ∧B, and May and Sigurdsson achieve this by generalizing orthogonal spectra

into the parametrized setting. We will denote the category of spectra over B by SB.

As already indicated, this category admits smash products X ∧B Y , and furthermore

there are parametrized function spectra FB(X, Y ) which together with the smash

product make SB into a closed symmetric monoidal category. The unit for the

smash product is the parametrized sphere spectrum SB. Again, a map f : A → B

induces a pull-back functor

f ∗ : SB → SA,

which is closed symmetric monoidal and has a left adjoint f! and a right adjoint f∗.

Moreover, the analogues of Propositions 18 and 19 hold for parametrized spectra (see

[MS06], Section 11.4).

The category of ex-spaces and spectra over B are related to each other by an

adjoint pair of functors

Σ∞B : KB
//SB : Ω∞Boo
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where Σ∞B is a symmetric monoidal functor in the sense that there exist natural

isomorphisms

Σ∞B S
0
B ≈ SB and Σ∞B (K ∧B L) ≈ Σ∞BK ∧B Σ∞B L

for K,L ∈ KB. Furthermore, Σ∞B commutes with the base-change functors f ∗ and f!

so that for a map f : A → B and ex-spaces K ∈ KB and L ∈ KA, we have natural

isomorphisms

Σ∞A f
∗K ≈ f ∗Σ∞BK and Σ∞B f!L ≈ f!Σ

∞
A L.

The categories SB admit stable model structures making the base-change ad-

junctions (f!, f
∗) into Quillen adjunctions that are Quillen equivalences when f is

a homotopy equivalence. As in the case of ex-spaces, we continue to write f! and

f ∗ for the derived versions. Again, there is a derived version of ∧B, and May and

Sigurdsson use a version of the Brown representability theorem to construct a derived

base-change functor f∗ that is right adjoint to f ∗ as well as derived parametrized func-

tion spectra FB(X, Y ). No connectedness assumptions like the ones that were needed

in the case of ex-spaces are necessary in the stable situation. Together with the smash

product, these function spectra make Ho SB into a closed symmetric monoidal cat-

egory, and the derived pull-back functors f ∗ are closed symmetric monoidal. Again,

the analogues of Propositions 18 and 19 hold as long as in the case of Proposition

19 we assume that at least one of f or j is a Serre fibration; see [MS06], Section

13.7. Also, the analogue of Proposition 20 holds: a map of parametrized spectra is

a stable equivalence precisely when it restricts to a stable equivalence between all

derived fibers.

The adjoint pair (Σ∞B ,Ω
∞
B ) is a Quillen adjunction, and hence descends to an

adjunction

Σ∞B : Ho KB
//Ho SB : Ω∞Boo

between the homotopy categories. For ex-spaces K,L ∈ Ho KB, there are natural

equivalences

Σ∞B S
0
B ' SB and Σ∞B (K ∧B L) ' Σ∞BK ∧B Σ∞B L.
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Furthermore, the derived Σ∞B commutes with the derived base-change functors f ∗ and

f! so that for a map f : A→ B and ex-spaces K ∈ KB and L ∈ KA, there are natural

equivalences

Σ∞A f
∗K ' f ∗Σ∞BK and Σ∞B f!L ' f!Σ

∞
A L.

3.3 The bicategories Ex and ExB

It is possible to organize the various categories Ho SB for varying base spaces B

into a closed bicategory Ex, and doing so will facilitate the discussion of the duality

underlying the construction of the umkehr maps we will need. Recall that a bicategory

C consists of the following data: first, a collection of objects; second, for each pair

(A,B) of objects, a category C (A,B); third, for each object A, an assignment of a

unit object UA ∈ C (A,A); and fourth, composition functors

� : C (B,C)× C (A,B)→ C (A,C)

that are associative and left and right unital up to specified coherent natural isomor-

phisms, with the unit objects UA serving as the units. We call the objects of C the

0-cells of C , the objects of the categories C (A,B) the 1-cells C , and the morphisms in

these categories the 2-cells of C . A monoidal category is precisely a bicategory with a

single 0-cell, with the composition � corresponding to the tensor product, so we can

regard bicategories as multi-object generalizations of monoidal categories. The proto-

typical example of a bicategory of the type we are interested in is the bicategory M of

bimodules, where the 0-cells are given by rings, and for rings R and S, the category of

M (R, S) of 1-cells from R to S is the category of S-R-bimodules. The composition

� is given by tensor product, so that the composite of 1-cells SMR : R → S and

TNS : S → T is the T -R-bimodule

TNS ⊗S SMR.

Roughly speaking, an involution t on a bicategory C consists of, first, a bijection
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t on the collection of 0-cells such that t2 = id; second, equivalences of categories

t : C (A,B)→ C (B,A)

together with natural isomorphisms tt ≈ id; and third, coherent natural isomorphisms

tUA ≈ UtA and t(Y �X) ≈ tX � tY

for all 0-cells A and composeable 1-cells X and Y . We refer to [MS06], Definition

16.2.1 for a more precise definition. A symmetric bicategory is a bicategory equipped

with an involution. For example, the bicategory M admits an involution (·)op, and

hence can be made into a symmetric bicategory. On the level of 0-cells, (·)op sends

a ring R to the opposite ring Rop, while on the level of 1-cells (·)op sends an S-R-

bimodule M to the same module M regarded as an Rop-Sop-bimodule.

A symmetric bicategory C is closed if for every triple (A,B,C) of 0-cells, there is

a functor

B : C (A,B)op × C (A,C)→ C (B,C)

such that for all 1-cells X : A → B, Y : B → C and Z : A → C, there is a natural

isomorphism

C (Y �X,Z) ≈ C (Y,X B Z).

(Here we have used the notation C (Y �X,Z) to denote the set of 2-cells from Y �X
to Z, and similarly for C (Y,X B Z). In general, we will rely on the context to make

clear whether an expression of the form C (−,−) should be interpreted as a category

of 1 and 2-cells between two 0-cells or as a set of 2-cells between two 1-cells.) Setting

Z C Y = t(tY B tZ), we then obtain functors

C : C (A,C)× C (B,C)op → C (A,B)

such that there are natural isomorphisms

C (Y �X,Z) ≈ C (X,Z C Y ).

when X, Y and Z are as before. We think of X B Z and Z C Y as “hom”-1-cells,
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and call the adjoints

ε : (X B Z)�X → Z and ε : Y � (Z C Y )→ Z (3.8)

of the identity maps of XBZ and ZCY , respectively, evaluation maps. For example,

the bicategory M is closed, and B and C in this bicategory are given by actual hom-

functors: if SMR : R → S, TNS : S → T and TLR : R → T are bimodules, then

bimodule maps

TNS ⊗S SMR → TLR

are in bijective correspondence with bimodule maps

TNS → Hom right−R(SMR, TLR)

so that we can take

M B L = Hom right−R(SMR, TLR),

and then

LCN = Hom left−T (TNS, TLR).

The evaluation maps (3.8) in this case correspond to evaluation of homomorphisms

against arguments, justifying our terminology.

Having introduced the relevant definitions, we will now describe the closed bicat-

egory Ex. The objects of Ex are spaces which are compactly generated and have

the homotopy type of a CW complexes, and given spaces A and B, the category of

Ex(A,B) of 1-cells from A to B is Ho SB×A. Given 1-cells X : A → B, Y : B → C

and Z : A→ C, we have

Y �X ' (πCBACA )!

(
(πCBACB )∗Y ∧C×B×A (πCBABA )∗X

)
, (3.9)

X B Z ' (πCBACB )∗FC×B×A
(
(πCBABA )∗X, (πCBACA )∗Z

)
(3.10)

and

Z C Y ' (πCBABA )∗FC×B×A
(
(πCBACB )∗Y, (πCBACA )∗Z

)
(3.11)

where the various maps called π stand for projection maps with the indicated domains
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and codomains (for brevity, we have omitted the ×-signs). The unit 1-cell UA ∈
Ex(A,A) is given by ∆!SA, where ∆ : A→ A×A is the diagonal map. The symmetry

involution t is the identity on 0-cells, and on 1-cells we have

t = τ ∗ : Ho SB×A → Ho SA×B

where τ : A×B → B × A is the map that interchanges the A and B coordinates.

The closed bicategories ExB are analogues of Ex that are suitable for work relative

to a base space B. The objects of ExB are fibrations K → B, L→ B, and so on with

base space B, and the category of 1-cells from K → B to L→ B is Ho (SL×BK). For

1-cells X : K → L, Y : L → M and Z : K → M (we now omit the projection to B

from the notation for a 0-cell), we have

Y �B X ' (πMLK
MK )!

(
(πMLK

ML )∗Y ∧M×BL×BK (πMLK
LK )∗X

)
, (3.12)

X BB Z ' (πMLK
ML )∗FM×BL×BK

(
(πMLK

LK )∗X, (πMLK
MK )∗Z

)
(3.13)

and

Z CB Y ' (πMLK
LK )∗FM×BL×BK

(
(πMLK

ML )∗Y, (πMLK
MK )∗Z

)
. (3.14)

The unit UK ∈ ExB(K,K) is given by δ!SK , where δ : K → K ×B K is the diagonal

map. The symmetry involution t is again the identity on 0-cells and is induced by the

coordinate exchange maps K ×B L→ L×B K for 1-cells and 2-cells. The bicategory

Ex is the special case Expt. We warn the reader that in their definition of ExB, May

and Sigurdsson do not require the maps K → B to be fibrations for objects of ExB,

and our ExB then corresponds to the full sub-bicategory ExfibB of their ExB. Since it

is this sub-bicategory ExfibB that will be relevant to our work, we have opted to give

it the simpler name ExB

Given a spectrum X over a space B, we can interpret X as either a 1-cell

X : B → pt

or a 1-cell

X : pt→ B
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in Ex, and we choose the first interpretation as our default. The 1-cell tX then

corresponds to X interpreted in the second way. If Y is another spectrum over B,

then (3.9), (3.10) and (3.11) give

Y � tX ' r!(Y ∧B X) and X B Y ' tY C tX ' r∗FB(X, Y )

where r : B → pt is the unique map from B to the one-point space. Similarly, given

a fibration K
p−→ B and a parametrized spectrum X over K, we will interpret X as a

1-cell

X : K → B

in ExB, where in the codomain we have written B for the identity fibration id : B →
B. The 1-cell tX is then X interpreted as a 1-cell B → K, and if Y is another

spectrum over K, then (3.12), (3.13) and (3.14) give the equivalences

Y �B tX ' p!(Y ∧K X) and X BB Y ' tY CB tX ' p∗FK(X, Y ). (3.15)

Remark 21. Although we do not know of a reference, it should be true that a

parametrized spectrum X over a connected space B with a basepoint is more or less

equivalent data to a module over the ring spectrum Σ∞+ ΩB, the Σ∞+ ΩB-module cor-

responding to X being the fiber of X over the basepoint equipped with the holonomy

action of ΩB. Under this correspondence, a parametrized spectrum over a product

B × A should then be equivalent to an Σ∞+ ΩB-Σ∞+ ΩA-bimodule. From this point of

view, it is not surprising that parametrized spectra over different base spaces should

fit into a structure similar to the bicategory M of bimodules.

Remark 22. The bicategory Ex is unsatisfactory in the sense that it fails to incorporate

one essential piece of structure present in parametrized homotopy theory, namely

continuous maps between base spaces. These maps should be present as kind of 1-

cells, but that slot has already been taken up by parametrized spectra. Similarly, the

bicategory M fails to capture all of the structure relevant to module theory, as it does

not include ring homomorphisms as part of the structure. Michael Shulman [Shu08]

has defined a more elaborate categorical structure called a framed bicategory that
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allows one to address these defects. However, we shall not need this more elaborate

version of Ex.

3.4 Duality in closed bicategories

Our main reason for introducing the bicategories Ex and ExB was to provide a home

for the duality that will give the conceptual underpinnings for the construction of

umkehr maps. In this section, we will discuss the general duality theory of 1-cells in

bicategories. We refer the reader to [MS06], Section 16.4 for more details.

By definition a dual pair (X, Y ) in a bicategory C consists of 1-cells X : B → A

and Y : A→ B together with 2-cells

η : UA → X � Y

and

ε : Y �X → UB

such that the following diagrams commute:

X

id

��

≈ // UA �X
η�X

// (X � Y )�X
≈
��

X X � UB≈
oo X � (Y �X)

X�ε
oo

and

Y

id

��

≈ // Y � UA
Y�η

// Y � (X � Y )

≈
��

Y UB � Y≈
oo (Y �X)� Y

ε�Y
oo

We call X the left dual of Y and Y the right dual of X. The maps ε and η are

called the evaluation and coevaluation maps, respectively. A 1-cell is called left or

right dualizable if it admits a left or right dual, respectively, and the dual is then

unique up to a canonical isomorphism. The definition of a dual pair may remind the
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reader of that of an adjoint pair of functors, and indeed an adjoint pair of functors

is simply a dual pair of 1-cells in the bicategory of categories, functors and natural

transformations.

If C is a closed bicategory and (X, Y ) is a dual pair in C with X : B → A and

Y : A→ B, then the adjoints of the evaluation map

ε : Y �X → UB

give isomorphisms

Y
≈−→ X B UB and X

≈−→ UB C Y

under which the evaluation map ε corresponds to the standard evaluation maps

(X B UB)�X → UB and Y � (UB C Y )→ UB

of equation (3.8). Thus in a closed bicategory, every 1-cell X : B → A has a canonical

candidate for a right dual, namely X BUB, and similarly a canonical candidate for a

left dual, namely UA CX. However, we stress that in general neither of these 1-cells

is a dual for X, as the requisite coevaluation map η may fail to exist. In general, left

or right dualizability of a 1-cell X amounts to a kind of finiteness condition on X.

If X : B → A and Y : A → B and Z : B → C are 1-cells in a closed bicategory

C and ε is a 2-cell

ε : Y �X → UB,

then the adjoint of the map

Z � Y �X Z�ε−−→ Z � UB
≈−→ Z

gives a map

µ : Z � Y → X B Z. (3.16)

The following proposition gives a characterization and a consequence of right dualiz-

ability.
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Proposition 23. With X, Y and ε as above, the following are equivalent:

1. (X, Y ) is a dual pair with evaluation map ε

2. The map µ of equation (3.16) is an isomorphism for Z = X

3. The map µ of equation (3.16) is an isomorphism for all Z.

Sketch of proof. Clearly (3) implies (2). Assuming (2) holds, the adjoint UA → XBX

of the isomorphism UA �X
≈−→ X and the inverse of µ give a coevaluation map

η : UA → X BX
µ−1

−−→ X � Y

that pairs with the evaluation map ε to make (X, Y ) into a dual pair. Finally,

assuming (1) and denoting the coevaluation map by η, the map

X B Z
≈−→ (X B Z)� UA

(XBZ)�η−−−−−→ (X B Z)�X � Y ε�Y−−→ Z � Y

provides an inverse for the map µ, showing that (3) holds.

3.5 Costenoble–Waner duality

If X and Y are parametrized spectra over a space B, we may ask whether (tX, Y )

or (X, tY ) give dual pairs of 1-cells in Ex, and these turn out to be wholly different

questions. Unrolling definitions, we see that (tX, Y ) is a dual pair if there are maps

∆!SB
η−→ π∗1X ∧B×B π∗2Y and r!(Y ∧B X)

ε−→ S (3.17)

satisfying the requisite identities, while (X, tY ) is a dual pair if there are maps

S
η−→ r!(X ∧B Y ) and π∗1Y ∧B×B π∗2X

ε−→ ∆!SB (3.18)

satisfying the identities. Here ∆ : B → B × B is the diagonal map, πi : B × B → B

are the projection maps, r is the unique map r : B → pt, and S = Spt is the sphere
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spectrum. Taking adjoints of the η and ε in (3.17), it is now easily seen that (tX, Y )

is a dual pair in Ex if and only if X and Y are dual to each other as objects of the

symmetric monoidal category Ho SB. On the other hand, (X, tY ) being a dual pair

corresponds to a new kind of duality between spectra over B.

Definition 24. If (X, tY ) as above is a dual pair, thenX and Y are called Costenoble–

Waner dual to each other. A spectrum over B is called Costenoble–Waner dualizable

if it admits a Costenoble–Waner dual. We call a spaceB Costenoble–Waner dualizable

if the sphere spectrum SB over B is Costenoble–Waner dualizable.

It is easy to see that a pair of 1-cells (Z,W ) is a dual pair if and only if (tW, tZ)

is, so the definition is actually symmetric in X and Y . It can be shown that any

spectrum X over B which is a wedge summand in Ho SB of a finite cell spectrum is

Costenoble–Waner dualizable (see [MS06], Theorem 18.2.1), so in particular any finite

CW complex is a Costenoble–Waner dualizable space. The following parametrized

version of the Atiyah duality theorem identifies the Costenoble–Waner duals of closed

manifolds.

Theorem 25 (See [MS06], Theorem 18.6.1). Suppose M is a smooth closed manifold

embedded in RL. Then (SM , tΣ
−L
M SνM ) is a Costenoble–Waner dual pair, where νM

denotes the normal bundle of the embedding.

We may sometimes write S−τM for the spectrum Σ−LM SνM over M . A pleasant

property of Costenoble–Waner duality is that if f : B → A is a map and (X, tY ) is

a Costenoble–Waner dual pair of spectra over B, then (f!X, tf!Y ) is a Costenoble–

Waner dual pair of spectra over A. As Costenoble–Waner duality over the one-point

space clearly reduces to ordinary Spanier–Whitehead duality of spectra, applying r!

to the dual pair of the theorem we recover the classical theorem of Atiyah identifying

the Spanier–Whitehead dual of Σ∞+M as Σ−LMνM .

In addition to regular Costenoble–Waner duality, we will also need to consider

relative versions of this duality defined in terms of the bicategories ExB instead of

Ex. In analogy with Definition 24, given a fibration K → B, we call parametrized

spectra X and Y over K Costenoble–Waner B-dual (or just B-dual for short) to each

other if (X, tY ) is a dual pair in ExB. A spectrum over K is called B-dualizable if
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it participates in a B-dual pair, and the space K itself is called B-dualizable if the

sphere spectrum SK is B-dualizable. Intuitively, we think of B-duality as a fiberwise

version of Costenoble–Waner duality; Theorem 26 below gives this intuition precise

content.

3.6 Parametrized R-modules

So far, our discussion of stable parametrized homotopy theory has been relative to

the sphere spectrum S: the fibers of our parametrized spectra are S-modules. How-

ever, later on we will also need to work with parametrized R-modules, where R is a

commutative S-algebra, with smash product given by fiberwise smash product over

R. While the foundations developed in [MS06] are unfortunately not sufficient to

support the full theory relative to R, there is little doubt that such a theory can

be developed. Thus, for the remainder of the thesis, we postulate the existence of a

theory of parametrized R-modules that works in essentially same way as the theory of

parametrized S-modules we have discussed.

While not yet as fully developed as May and Sigurdsson’s theory of parametrized

S-modules, one approach to developing a good theory of parametrized R-modules

is via ∞-categorical presheaves of R-modules. In this approach, a parametrized R-

module over a space B is an ∞-functor from the ∞-groupoid determined by B to an

∞-category of (unparametrized) R-modules. Concretely, using the quasicategories of

Joyal [Joy02, Lur09] to model ∞-categories, a parametrized R-module over B is a

map of simplicial sets

SingB → N(R-mod)◦

where SingB is the singular complex of B, R-mod is a simplicial model category

of R-modules, (−)◦ stands for the full subcategory given by the cofibrant–fibrant

objects, and N is the simplicial nerve functor. This approach is discussed in [ABG+08,

ABG10], and the latter of these papers also contains a comparison with May and

Sigurdsson’s theory [MS06].

We will later need a classifying spectrum for (graded) R-line bundles, that is, for

parametrized R-modules whose fibers are equivalent to a suspension or desuspension
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of R. Using the ∞-presheaf approach to the theory of parametrized R-modules, the

construction of such a classifying spectrum can be sketched as follows. As before, let

R-mod denote a simplicial model category of R-modules, and let (R-line•)
◦ denote the

subcategory whose objects are those cofibrant-fibrant R-modules which are equivalent

to ΣnR for some n ∈ Z and whose morphisms are the equivalences between such R-

modules. Then the geometric realization

|N(R-line•)
◦| (3.19)

gives a classifying space for graded R-line bundles: the isomorphism classes of graded

R-line bundles over a space B are in bijective correspondence with homotopy classes of

maps from B to |N(R-line•)
◦|. Moreover, the smash product (over R) of R-modules

gives the ∞-category N(R-line•)
◦ symmetric monoidal structure, which makes the

space |N(R-line•)
◦| a group-like E∞ space, and hence the zeroth space in a connective

spectrum. We will denote this spectrum by line•(R). This is spectrum is then our

desired classifying spectrum: isomorphism classes of graded R-lines over B are in

bijective correspondence with homotopy classes of maps of spectra from Σ∞+B to

line•(R). We note that the zeroth space (3.19) of line•(R) is equivalent to

Z/l × |N(R-line)◦| ' Z/l ×BGL1(R) (3.20)

where l is the period of R or 0 if R is not periodic. Here (R-line)◦ is defined in the

same way as (R-line•)
◦ except that we require all objects to be equivalent to Σ0R.

The equivalence in (3.20) follows from [ABG+08].

Given a finite-dimensional vector space V , we can associate to V the E-module

SV ∧E, where SV denotes the one-point compactification of V . This association gives

rise to a map

ko→ line•(R)

where ko is the connective real K-theory spectrum. This map will feature later in

Section 5.4 in the definition of universal R-orientation, Definition 37.



Chapter 4

Umkehr maps in the twisted

setting

In this chapter, we discuss umkehr maps (or wrong-way maps) in the parametrized

setting. The first section is devoted to the proof of Theorem 26, the main result and

workhorse of the chapter. The theorem is a slight partial generalization—from fiber

bundles to fibrations, but only non-equivariantly—of May and Sigurdsson’s [MS06]

Theorem 19.5.2, which they call the Fiberwise Costenoble–Waner Duality Theorem.

(A result similar to May and Sigurdsson’s was proven earlier by Po Hu; see [Hu03],

Theorem 4.9). The second section then explains how Theorem 26 gives rise to umkehr

maps. The umkehr maps we will need in the sequel are pretransfer-type maps, with

history (at least in the untwisted case) going back to Becker and Gottlieb’s original

paper on transfer maps [BG75]. However, as we will see, Theorem 26 naturally gives

rise to more general umkehr maps as well.

4.1 The fiberwise Costenoble–Waner duality the-

orem for fibrations

Our goal in this section is to prove the following version of the Fiberwise Costenoble–

Waner Duality Theorem, [MS06], Theorem 19.5.2. The result is a generalization of

43
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May and Sigurdsson’s theorem, which is deals with fiber bundles instead of fibrations.

Theorem 26. Let p : E → B be a fibration whose fibers are Costenoble–Waner du-

alizable. Then E is Costenoble–Waner B-dualizable, and for any Costenoble–Waner

B-dual Tp of SE, we have a natural equivalence

p!(X ∧B Tp) ' p∗X (4.1)

for X ∈ Ho SE.

The proof of the theorem hinges on relating duality in the bicategory ExB to

duality in the bicategory Ex. Let us start by introducing the relevant categorical

notions. If C and D are bicategories, a pseudofunctor

F : C → D

consists of, first, a map from the 0-cells of C to the 0-cells of D ; second, for each pair

A,B of 0-cells of C , a functor

F : C (A,B)→ D(FA, FB);

and third, coherent natural isomorphisms

β : FY � FX ≈−→ F (Y �X) and κ : UFA
≈−→ FUA. (4.2)

If C and D are closed bicategories, a pseudofunctor F : C → D is called closed if the

adjoints

α : F (X B Z)→ F (X) B F (Z) (4.3)

of the maps

F (X B Z)� F (X)
β−→ F ((X B Z)�X)

Fε−→ F (Z)

are isomorphisms.
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If f : A → B is a map, then according to [MS06], Proposition 19.3.4, f induces

a pseudofunctor f ∗ : ExB → ExA in the following way: On objects, f ∗ sends a 0-cell

K → B to the pullback f ∗K → A, as in the square

f ∗K

��

// K

��

A
f

// B

and for 0-cells K → B and L→ B of ExB, the functor

f ∗ : ExB(K,L)→ ExA(f ∗K, f ∗L)

is defined by pull-back along the map

f ∗K ×A f ∗L ≈ f ∗(K ×B L)→ K ×B L.

If X and Y are as in equation (3.12), the natural isomorphism β of (4.2) is given by

the composite

f ∗Y �A f ∗X ' (πMK)! ((πML)∗f ∗Y ∧MLK (πLK)∗f ∗X)

'−→ (πMK)! (f ∗(πML)∗Y ∧MLK f
∗(πLK)∗X)

'−→ (πMK)!f
∗ ((πML)∗Y ∧MLK (πLK)∗X)

'−→ f ∗(πMK)! ((πML)∗Y ∧MLK (πLK)∗X)

' f ∗(Y �B X)

(4.4)

where we have used overline to denote pullback along f and we have omitted ×B
and ×A from the notation. Here the maps denoted by π are projections domain

M ×B L ×B K or f ∗M ×A f ∗L ×A f ∗K and with the indicated codomains, and the

next-to-last equivalence is given by the analogue of Proposition 19 for the homotopy

category of parametrized spectra. As the precise definition of the natural isomorphism

κ of (4.2) will not be important to us, we shall not elaborate on it here.
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As one might expect, the pseudofunctor f ∗ : ExB → ExA is closed, and proving

this will be our next goal. To make the proof more conceptual, we will first indulge

in some more category theory. Suppose

L : C //D : Roo

and

L̄ : C̄ //D̄ : R̄oo

are adjunctions and B : C → C̄ and B′ : D → D̄ are functors. Then two natural

transformations

σ : L̄B → B′L and τ : BR→ R̄B′

are called mates when σ is the composite

L̄B
L̄Bη−−→ L̄BRL

L̄τL−−→ L̄R̄B′L
ε̄B′L−−−→ B′L

or equivalently when τ is the composite

BR
η̄BR−−→ R̄L̄BR

R̄σR−−→ R̄B′LR
R̄B′ε−−−→ R̄B′.

Here η, η̄ and ε, ε̄ denote the units and the counits of the adjunctions, respectively.

As the domain and codomain of σ feature the left adjoints L and L̄, we sometimes

call σ the left mate of τ , and similarly τ the right mate of σ. Pictorially, σ and τ are

mates when

C
B
��

L // D
B′

��

C̄

σ
;C�������

�������

L̄
// D̄

=

C
id

��

L // D
id

��

C
B

��

τ

�#
>>>>>>>>

>>>>>>>> DRoo

B′

��

η +3

C̄
id

��

D̄R̄oo

id

��

C̄
L̄
// D̄

ε̄ +3

and

C
B
��

τ

�#
>>>>>>>

>>>>>>> DRoo

B′

��

C̄ D̄
R̄
oo

=

C
id

��

DRoo

id

��

C
B

��

L // D
B′

��

ε +3

C̄

σ

;C��������

��������

id

��

L̄ // D̄
id

��

C̄ D̄
R̄

oo

η̄ +3
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Recalling that the adjoint of a morphism f : L̄C → D under the adjunction

L̄ : C̄ //D̄ : R̄oo

is the composite

C
η̄−→ R̄L̄(C)

R̄f−→ R̄D,

we see that the right mate of

σ : L̄B → B′L

is precisely the adjoint of

L̄BR
σR−→ B′LR

B′ε−−→ B′.

In particular, taking (L,R) and (L̄, R̄) to be (−�X,XB−) and (−�F (X), F (X)B−),

respectively, and letting B and B′ be given by F , we have the following lemma.

Lemma 27. Suppose F : C → D is a pseudofunctor. Then for any 1-cell X the

natural transformation

α : F (X B−)→ F (X) B F (−)

of (4.3) is the right mate of the natural isomorphism

β : F (−)� F (X)
≈−→ F (−�X)

of (4.2).

We are now ready to prove that f ∗ is closed.

Proposition 28. Suppose f : A→ B is a continuous map. Then the pseudofunctor

f ∗ : ExB → ExA

is closed.

Proof. Let K → B, L→ B and M → B be 0-cells and let X : K → L be a 1-cell in
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ExB. The adjunctions

(−)�B X : ExB(L,M) //ExB(K,M) : X BB (−)oo

and

(−)�A f ∗(X) : ExB(f ∗L, f ∗M) //ExB(f ∗K, f ∗M) : f ∗X BA (−)oo

split as composites

Ho SML

(πML)∗
// Ho SMLK

(πML)∗
oo

(−)∧MLK(πLK)∗X
// Ho SMLK

FMLK((πLK)∗X,−)
oo

(πMK)!
// Ho SMK

(πMK)∗
oo

and

Ho SML

(πML)∗
// Ho SMLK

(πML)∗
oo

(−)∧MLK(πLK)∗f∗X
// Ho SMLK

FMLK((πLK)∗f∗X,−)
oo

(πMK)!
// Ho SMK

(πMK)∗
oo

where again we have used overline to denote pullback along f and we have omitted ×B
and ×A from the notation. From equation (4.4), we see that the natural isomorphism

β : f ∗(−)�A f ∗(X)
'−→ f ∗(−�B X)

is the composite 2-cell in

Ho SML

f∗

��

(πML)∗
// Ho SMLK

f∗

��

(−)∧MLK(πLK)∗X
// Ho SMLK

f∗

��

(πMK)!
// Ho SMK

f∗

��

Ho SML

β1

7?xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxx

(πML)∗
// Ho SMLK

β2

3;ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

(−)∧MLK(πLK)∗f∗X
// Ho SMLK

β3

7?wwwwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwww

(πMK)!

// Ho SMK

where β1 is the isomorphism

β1 : (πML)∗f ∗
'−→ f ∗(πML)∗,
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β2 is the composite

β2 : f ∗(−) ∧MLK (πLK)∗f ∗X
'−→ f ∗(−) ∧MLK f

∗(πLK)∗X

'−→ f ∗ ((−) ∧MLK (πLK)∗X)

and β3 is the isomorphism

β3 : (πMK)!f
∗ '−→ f ∗(πMK)!

given by the analogue of Proposition 19 for the homotopy categories of parametrized

spectra. Now the right mate

α : f ∗(X BB −)→ f ∗(X) BA f
∗(−)

of β is the composite 2-cell

Ho SML

id

��

Ho SMLK

(πML)∗
oo

id

��

Ho SMLK

FMLK((πLK)∗X,−)
oo

id

��

Ho SMK

(πMK)∗
oo

id

��

ε +3 ε +3 ε +3

Ho SML

f∗

��

(πML)∗
// Ho SMLK

f∗

��

(−)∧MLK(πLK)∗X
// Ho SMLK

f∗

��

(πMK)!
// Ho SMK

f∗

��

Ho SML

id

��

β1

7?xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxx

(πML)∗
// Ho SMLK

id

��

β2

3;ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

(−)∧MLK(πLK)∗f∗X
// Ho SMLK

id

��

β3

7?wwwwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwww

(πMK)!

// Ho SMK

id

��

η +3 η +3 η +3

Ho SML Ho SMLK(πML)∗
oo Ho SMLKFMLK((πLK)∗f∗X,−)

oo Ho SMK(πMK)∗
oo

But here the composite of the 2-cells in the left column is the right mate of β1, which



50 CHAPTER 4. UMKEHR MAPS IN THE TWISTED SETTING

is the natural isomorphism

f ∗(πML)∗
'−→ (πML)∗f

∗

of the analogue of Proposition 19; the composite of the 2-cells in the middle column

is the right mate of β2, which is the natural isomorphism

f ∗FMLK((πLK)∗X,−)
'−→ FMLK(f ∗(πLK)∗X, f ∗(−))

'−→ FMLK((πLK)∗f ∗X, f ∗(−));

and the composite of the 2-cells in the right column is the natural isomorphism

f ∗(πMK)∗
'−→ (πMK)∗f ∗.

It follows that α is a natural isomorphism as well, as desired.

Suppose X : A→ B, Y : A→ C and Z : C → D are 1-cells in a closed bicategory

C . Then the adjoint of the map

Z � (X B Y )�X Z�ε−−→ Z � Y

gives a map

µXY Z : Z � (X B Y )→ X B (Z � Y ).

Let us denote by µXZ the composite

µXZ : Z � (X B UA)
µXUAZ−−−−→ X B (Z � UA)

≈−→ X B Z.

Then µXZ is simply the map µ of equation (3.16) associated with the standard eval-

uation map

ε : (X B UA)�X → UA.

Our next goal is to show that FµXZ is isomorphic to µFX,FZ when F is a closed pseud-

ofunctor. We will start with the following lemma, which spells out the relationship

between FµXY Z and µFX,FY,FZ .
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Lemma 29. Suppose F : C → D is a pseudofunctor between closed bicategories.

Then the following diagram commutes:

F (Z � (X B Y ))
FµXY Z // F (X B (Z � Y ))

α

��

FZ � F (X B Y )

β

OO

FZ�α
��

FX B F (Z � Y )

FZ � (FX B FY ) µFX,FY,FZ
// FX B (FZ � FY )

FXBβ

OO
(4.5)

Proof. We have the following diagram:

FZ � F (X B Y )� FX β�FX
//

FZ�α�FX

��

FZ�β

&&LLLLLLLLLLLLLL
F (Z � (X B Y ))� FX

FµXY Z�FX

&&LLLLLLLLLLLLLL

β

��

FZ � F ((X B Y )�X)

β

&&LLLLLLLLLLLLLL

FZ�Fε

��

F (X B (Z � Y ))� FX

β

��

F (Z � (X B Y )�X)

F (µXY Z�X)

&&LLLLLLLLLLLLLL

F (Z�ε)

��

FZ � (FX B FY )� FX

FZ�ε
&&LLLLLLLLLLLLLL

F ((X B (Z � Y ))�X)

Fε
xxrrrrrrrrrrrrrr

FZ � FY
β
// F (Z � Y )

(4.6)

Here the triangle on top commutes by a coherence condition required of β, and the

parallelogram on the right and the trapezoid in the middle commute by naturality.

The parallelogram on the left commutes by the definition of α as an adjoint of Fε◦β,

and the triangle in the bottom right hand corner commutes by the definition of µXY Z

as an adjoint of Z � ε. Now the composite

α ◦ FµXY Z ◦ β
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in diagram (4.5) is adjoint to the composition of the maps along the top- and right-

edges of diagram (4.6), while the other composite in diagram (4.5) is adjoint to the

composite of the maps along the left and bottom outer edge of diagram (4.6). The

claim follows.

We are now ready to prove that FµXY and µFX,FY are isomorphic.

Lemma 30. Suppose F : C → D is a closed pseudofunctor. Then the maps

F (Z � (X B UA))
FµXZ−−−→ F (X B Z)

and

F (Z)� (FX B UFA)
µFX,FZ−−−−→ FX B FZ

are related through a zigzag of coherence isomorphisms.

Proof. We have the diagram

F (Z � (X B UA))
FµXUAZ // F (X B (Z � UA))

≈ //

α≈

��

F (X B Z)

α≈

��

FZ � F (X B UA)

β ≈

OO

α ≈

��

FX B F (Z � UA)

≈

##FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FZ � (FX B FUA)
µFX,FUA,FZ // FX B (FZ � FUA)

β≈

OO

FZ � (FX B UFA)

κ ≈

OO

µFX,UFA,FZ // FX B (FZ � UFA)

κ≈

OO

≈ // FX B FZ

The rectangle in the top left hand corner commutes by Lemma 29, while the rectangle

in the bottom left hand corner and the trapezoid in the top right hand corner commute

by naturality. Finally, the triangle commutes by a coherence property required of

pseudofunctors. As FµXZ is the composite of the maps in the top row and µFX,FZ is

the composite of the maps in the bottom row of the diagram, the claim follows.
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The proof of Theorem 26 is now easy.

Proof of Theorem 26. We will show that the standard evaluation map

(SE BB UE)�B SE
ε−→ UE

makes (SE, SE BB UE) a Costenoble–Waner B-dual pair. By Proposition 23, it is

enough to show that the map

µSE ,SE : SE �B (SE BB UE)→ SE BB SE

is an equivalence in ExB(B,B) = Ho SB, and by the analogue of Proposition 20 for

parametrized spectra, µSE ,SE is an equivalence if the map

b∗(µSE ,SE) : b∗(SE �B (SE BB UE))→ b∗(SE BB SE)

is an equivalence in Ex(pt, pt) = Spt for every b ∈ B. By Proposition 28, b∗ : ExB →
Ex is a closed pseudofunctor, so by Lemma 30 the map b∗(µSE ,SE) is equivalent to

the map

µb∗SE ,b∗SE : b∗SE � (b∗SE B Ub∗E)→ b∗SE B b∗SE.

As b∗E is just the fiber Eb of E over b, and b∗SE is equivalent to SEb over Eb, the

map µb∗SE ,b∗SE is equivalent to the map

µSEb ,SEb : SEb � (SEb B UEb)→ SEb B SEb .

But this last map is an equivalence by Proposition 23 and the assumption that the

fiber Eb is Costenoble–Waner dualizable. Thus b∗(µSE ,SE) is also an equivalence, and

SE is Costenoble–Waner B-dualizable, as claimed.

Suppose now Tp is a Costenoble–Waner B-dual for SE. By Proposition 23, we

then have a natural equivalence

µ : X �B Tp
'−→ SE BB X
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for all spectra X over E. By equation (3.15), the domain of µ is equivalent to

p!(X ∧E Tp), while the codomain of µ is equivalent to p∗FE(SE, X) ' p∗X. Thus the

desired comparison (4.1) follows.

4.2 Umkehr maps

In this section, we explain how Theorem 26 can be used to construct umkehr maps

in the twisted setting. Throughout the section we will work on the level of homotopy

categories.

Let us start by introducing notation. Suppose B is a space and X is a spectrum

over B. Then we denote

H•(B; X) = r!X and H•(B; X) = r∗X (4.7)

where r is the unique map from B to pt. The notation is supposed to suggest

homology and cohomology with twisted coefficients: If X is, say, an R-line bundle

over B, then the homotopy groups of H•(B; X) = r!X and H•(B; X) = r∗X are

the twisted R-homology and R-cohomology groups of B, with the twisting given by

the R-line bundle X. The case of a trivial bundle corresponds to the situation where

there is no twisting. If X is the trivial spectrum over B with fiber the spectrum F ,

then

πqH•(B; X) ≈ Fq(B) and πqH
•(B; X) ≈ F−q(B).

It is convenient to generalize the notation (4.7) to a parametrized setting. Suppose

p : E → B is a fibration, and let X be a spectrum over E. Then we denote

H(B)
• (E; X) = p!X and H•(B)(E; X) = p∗X,

sometimes dropping (B) from the notation when the base space B is clear from the

context. We think of H(B)
• and H•(B) as fiberwise versions of H• and H•, respectively:
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if b ∈ B, then

H(B)
• (E; X)b ' H•(Eb; i

∗
bX) and H•(B)(E; X)b ' H•(Eb; i

∗
bX)

where (−)b denotes the fiber over b and ib : Eb ↪→ E is the inclusion. We note that

we have

H•(E; X) ' r!H(B)
• (E; X) and H•(E; X) ' r∗H•(B)(E; X)

where r continues to denote the map from B to the one-point space.

Given a commutative diagram

X

E1

p1
  

AAAAAAA
f

// E2

p2
~~}}}}}}}

B

(4.8)

where p1 and p2 are fibrations and X is a spectrum over E2, we define

f] : H(B)
• (E1; f ∗X)→ H(B)

• (E2; X) (4.9)

to be the composite

H(B)
• (E1; f ∗X) = (p1)!f

∗X ' (p2)!f!f
∗X → (p2)!X = H(B)

• (E2; X)

where the equivalence follows from the factorization p1 = p2f and the arrow is given

by the counit of the adjoint pair (f!, f
∗). Similarly, we define

f ] : H•(B)(E2; X)→ H•(B)(E1; f ∗X) (4.10)

as the composite

H•(B)(E2; X) = (p2)∗X → (p2)∗f∗f
∗X ' (p1)∗f

∗X = H•(B)(E1; f ∗X)
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where the arrow is now given by the unit of the adjoint pair (f ∗, f∗). Applying r! to

(4.9) and r∗ to (4.10), we also obtain induced maps

f] : H•(E1; f ∗X)→ H•(E2; X)

and

f ] : H•(E2; X)→ H•(E1; f ∗X).

We choose not to distinguish these maps notationally from the previous ones.

Suppose now that p : E → B is a fibration with Costenoble–Waner dualizable

fibers. Then Theorem 26 gives an equivalence

H(B)
• (E; X ∧E Tp) ' H•(B)(E; X) (4.11)

where X is any spectrum over E and Tp is a Costenoble–Waner B-dual of E. As-

suming that the fibers of p1 and p2 are Costenoble–Waner dualizable, the equivalence

(4.11) allows us to associate various umkehr maps to f . Denoting by T1 and T2 the

Costenoble–Waner B-duals of E1 and E2, respectively, we define a map

f� : H•(E2; X ∧E2 T2)→ H•(E1; f ∗X ∧E1 T1) (4.12)

as the composite

H•(E2; X ∧E2 T2) ' H•(E2; X)
f]−→ H•(E1; f ∗X) ' H•(E1; f ∗X ∧E1 T1).

Assuming that T2 is invertible in the sense that there exists a spectrum T−1
2 over E2

such that T2 ∧E2 T
−1
2 ' SE2 , substituting X ∧E2 T

−1
2 for X in (4.12), we also obtain

an umkehr map

H•(E2; X)→ H•(E1; f ∗X ∧E1 (f ∗(T2)−1 ∧E1 T1)) (4.13)

which we continue to denote by f�. Similarly, we can use the equivalence (4.11) to
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define umkehr maps in cohomology. Assuming that T1 and T2 are both invertible, the

composite

H•(E1; f ∗X ∧E1 T
−1
1 ) ' H•(E1; f ∗X)

f]−→ H•(E2; X) ' H•(E2; X ∧E2 T
−1
2 )

gives us an umkehr map

f� : H•(E1; f ∗X ∧E1 T
−1
1 )→ H•(E2; X ∧E2 T

−1
2 ) (4.14)

and substituting X ∧E2 T2 for X we also get an umkehr map

f� : H•(E1; f ∗X ∧E1 (f ∗T2 ∧E1 T
−1
1 ))→ H•(E2; X); (4.15)

in fact, for the definition of this latter umkehr map, it is enough to assume that just

T1 is invertible. Again, applying r! to the homological umkehr maps and r∗ to the

cohomological ones, we obtain umkehr maps featuring H• and H• instead of H• and

H•, respectively. We will use the notation f� and f� for these maps as well.

In general, special assumptions are necessary to guarantee that the twisting Tp

associated with a fibration

p : E → B

is invertible. A common situation where Tp is invertible and easy to understand is

when p is a fiber bundle whose fibers are closed manifolds; in that case, it follows from

Theorem 18.6.1, Proposition 18.3.2 and Corollary 19.4.4 of [MS06] that Tp ' S−τvertE ,

where τvert is the vertical tangent bundle of p. More generally, Tp is invertible when

p is a fibration whose fibers are homotopy equivalent to closed manifolds.

We now turn to examples, focusing on homology. For our purposes, the most

important umkehr maps correspond to the case where E2 = B and p2 is the identity

map in diagram (4.8). Writing E for E1, p for p1 and f and Tp for T1, the umkehr

map (4.12) becomes

p� : H•(B; X)→ H•(E; p∗X ∧E Tp).
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We call this map (or the one obtained from it by applying r!) the pretransfer map. To

motivate the terminology, consider the case where p : E → B is a fiber bundle whose

fibers are closed manifolds, so that Tp ' S−τvertE . Then, if X is a trivial bundle of

spectra with fiber the spectrum F , applying r! to the above map and taking homotopy

groups gives us the factor

F∗(B)→ F̃∗(E
−τvert)

of the full Becker–Gottlieb transfer map

F∗(B)→ F∗(E)

of [BG75].

While the pretransfer maps discussed above are the umkehr maps that will be the

most important for us in the sequel, we would like to point out that the case where

the space B in diagram (4.8) is a one-point space is also of interest. In that case,

assuming that E is a closed manifold M and using Theorem 25 to identify S−τMM as

the Costenoble–Waner dual of M , the equivalence (4.11) becomes

H•(M ; X ∧M S−τMM ) ' H•(M ; X), (4.16)

a strong form of unoriented Poincaré duality. If f : M1 → M2 is a map between

closed manifolds, then (4.12) becomes a map

f� : H•(M2; X ∧M2 S
−τM2
M2

)→ H•(M1; f ∗X ∧M1 S
−τM1
M1

) (4.17)

and (4.13) a map

H•(M2; X)→H•(M1; f ∗X ∧M1 (f ∗(S
−τM2
M2

)−1 ∧M1 S
−τM1
M1

))

'H•(M1; f ∗X ∧M1 S
νf
M1

)
(4.18)

where

νf = f ∗τM2 − τM1

is the virtual normal bundle of f . As pointed out by Cohen and Klein [CK09], taking
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f to be the diagonal map ∆ : M → M ×M of a closed manifold M and taking X

to be (LM × LM, ev× ev)+, where ev : LM →M is evaluation at the basepoint, we

obtain an umkehr map relevant to string topology: with these choices, (4.17) becomes

the map

∆� : H•(M ×M ; (LM × LM, ev × ev)+ ∧M×M S
−τM×M
M×M )

→ H•(M ; ∆∗(LM × LM, ev × ev)+ ∧M S−τMM )

which is just the umkehr map

LM−TM ∧ LM−TM → (LM ×M LM)−TM

featuring in the Cohen–Jones construction [CJ02] of the loop product.



Chapter 5

Towards a field theory

In this chapter, we will prove our main result towards the construction of the field

theories of Conjecture 1, namely the existence of a field-theory operation associated

with a fixed cobordism W . This result is Theorem 41. While in that main result

we only associate an operation to a single cobordism, it is natural to expect that,

like in the case of the Freed–Hopkins–Teleman field-theory operations (see [FHT07a],

Section 4), one should more generally be able to associate an operation to a family of

cobordisms parametrized by a space. Indeed, much of our setup is tuned towards the

construction of such an operation in the universal case where the family is the tauto-

logical one over the space of all cobordisms. The conjectural operation parametrized

by this space is the composite map (5.56), and in Section 5.5 we will explain how this

map would give rise to the Homological Conformal Field Theory operations we had

in mind in Conjecture 1.

The chapter is structured as follows. In Section 5.1 we will define our cobordism

categories, modeling them after the ones considered in [GMTW09]. Our field-theory

operations depend on the choice of a universal R-orientation (see Definition 37), a

notion that features Madsen–Tillmann spectra. In Section 5.2 we discuss Madsen–

Tillmann spectra and relevant related spectra, and construct maps from the spaces

of objects and morphisms in our cobordism categories to these spectra. It is through

these maps that universal R-orientations interact with the cobordism category. The

field-theory operation induced by a cobordism W arises from a pull–push construction

60
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in the diagram

map(∂0W,BG) map(W,BG)soo t //map(∂1W,BG),

and in Section 5.3 we calculate the twisting involved in the pretransfer map induced

by s by finding a fiber bundle approximation to the fibration s. In Section 5.4 we then

construct our field-theory operations. Finally, in Section 5.5 we discuss conjectures

that would get us closer to the construction of the field theories of Conjecture 1, and

also comment on the relationship of our work to that of Freed, Hopkins and Teleman

[FHT07a] and Chataur and Menichi [CM07].

5.1 Cobordism categories

In this section, we will describe briefly the cobordism categories C+
d and C+

d (K) rele-

vant to the construction of our field theories, as well as their variants C+
d,∂ and C+

d,∂(K).

Intuitively, C+
d is the category whose objects are oriented closed (d − 1)-manifolds,

and whose morphisms are the oriented cobordisms of such, and the category C+
d (K)

is similar, except that each object and morphism is equipped with a map to a space

K. The variants C+
d,∂ and C+

d,∂(K) are the subcategories of C+
d and C+

d (K), respec-

tively, where every connected component of every cobordism has both an incoming

and an outgoing boundary component.1 Apart from the minor addition of the choice

of a tubular neighborhood into the data making up an object or a morphisms, the

cobordism categories C+
d and C+

d (K) are special cases of the cobordism categories

considered in [GMTW09]. The genealogy of these cobordism categories goes back to

at least [MT01].

As a first step toward defining our cobordism category of oriented d-manifolds in a

background space K, consider the category C̃+
d,L(K) defined as follows. Let Grd(R

L)

and Gr+
d (RL) denote the Grassmannians of unoriented and oriented d-dimensional

linear subspaces of RL, respectively, and notice that an embedding of a d-dimensional

1Thus our C+d,∂ and C+d,∂(K)p are different from the positive boundary subcategories considered
in [GMTW09], as in the positive boundary subcategories only the outgoing boundaries of the cobor-
disms are only required to be non-empty.
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manifold M into RL induces a canonical map

τM : M → Grd(R
L)

classifying the tangent bundle of M . Then the set of objects Obj C̃+
d,L(K) consists

of quadruples (M,a, τ̃M , f), where M ⊂ RL is a closed (d − 1)-dimensional smooth

submanifold of RL; a is a real number; τ̃M is an orientation of M , by which we mean

a lift of the canonical map

τM : M → Grd−1(RL)

to a map

M → Gr+
d−1(RL);

and f is a continuous map

f : M → K.

The set of morphisms Mor C̃+
d,L(K) is a disjoint union of a copy of Obj C̃+

d,L(K)

(giving the identity morphisms), and a set Mor C̃+
d,L(K) consisting of quintuples

(W,a0, a1, τ̃W , f), where a0 and a1 are real numbers; W is a compact d-dimensional

submanifold of [a0, a1]×RL with boundary ∂W = W ∩ {a0, a1} ×RL; τ̃W is a lift of

the canonical map

τW : W → Grd(R×RL)

to Gr+
d (R×RL); and f is a continuous map

f : W → K.

We call ∂0W = W ∩ {a0} × RL the incoming and ∂1W = W ∩ {a1} × RL the

outgoing boundary of W , and require that W ∩ [a0, a0 + ε[×RL = [a0, a0 + ε[×∂0W

and W∩]a1 − ε, a1]×RL =]a1 − ε, a1]× ∂1W for some small ε > 0. The source and

target maps

s, t : Mor C̃+
d,L(K)→ Obj C̃+

d,L(K)

are given by restriction of the data to the incoming and outgoing boundaries, re-

spectively, and composition is defined by concatenation. The sets Mor C̃+
d,L(K) and
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Obj C̃+
d,L(K) can be given topologies in a natural way, making C̃+

d,L(K) a category

internal to the category of topological spaces, but instead of reciting the long details

here, we refer the reader to [GMTW09], with the advice that he or she should simply

replace Rd−1+∞ in that discussion with RL where appropriate.

The standard inclusion RL ↪→ RL+1 induces a functor

C̃+
d,L(K)→ C̃+

d,L+1(K)

and in the limit as L goes to infinity, we obtain a category C̃+
d (K) = C̃+

d,∞(K) internal

to topological spaces. Concretely, we can describe the category C̃+
d (K) simply by

taking L =∞ in the discussion above, where R∞ is to be topologized as the colimit

of the finite-dimensional spaces RL for all L (so that every submanifold M or W of

R∞ is contained in some finite RL). This category C̃+
d (K) is a special case of the

kind of cobordism categories considered in [GMTW09]. However, for our purposes

it is desirable to augment the objects and morphisms in C̃+
d (K) with tubular neigh-

borhoods. Thus, for finite L, we define a category C+
d,L(K) as follows. The space of

objects Obj C+
d,L(K) consists of quintuples (M,a, τ̃M , f,OM), where (M,a, τ̃M , f) is

an object of C̃+
d,L(K) and OM is a tubular neighborhood of the embedding M ⊂ RL,

that is, an extension of the map M ⊂ RL to a smooth open embedding of its normal

bundle ν = ν(M ⊂ RL) into RL such that the composite map of vector bundles over

the manifold M

ν → τM ⊕ ν ≈ τν |M
dOM−−−→ τRL|M → ν

is the identity. Unlike in the image one would typically draw of the situation, we do

not require the image of OM to be bounded. Similarly, the space Mor C+
d,L(K) of non-

identity morphisms consists of sextuples (W,a0, a1, τ̃W , f,OW ), where the first five

components form a morphism in C̃+
d,L(K) and OW is a tubular neighborhood of the

embedding W ⊂ [a0, a1]×RL. By our assumption on what W looks like near ∂0W , we

know that for some ε > 0, the restriction of the normal bundle of W ⊂ [a0, a1]×RL

to W ∩ [a0, a0 + ε[×RL is canonically isomorphic to the product

[a0, a0 + ε[× ν(∂0W ⊂ RL),
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and we require that for t sufficiently close to a0, the map OW has the form

OW (t, v) = (t,O∂0W (v))

for some tubular neighborhood O∂0W of ∂0W ⊂ RL; and similarly for ∂1W . Finally,

we observe that the inclusion RL ↪→ RL+1 induces a functor

C+
d,L(K)→ C+

d,L+1(K);

under this functor, a tubular neighborhood OM : ν(M ⊂ RL) → RL is sent to the

tubular neighborhood

ν(M ⊂ RL+1) = ν(M ⊂ RL)×R
OM×idR−−−−−→ RL ×R = RL+1,

and similarly with tubular neighborhoods associated with morphisms. In the limit as

L goes to infinity, we obtain a category C+
d (K) internal to topological spaces.

Forgetting the tubular neighborhood gives functors

C+
d,L(K)→ C̃+

d,L(K) and C+
d (K)→ C̃+

d (K),

and as the choice of a tubular neighborhood is a contractible one, these functors induce

homotopy equivalences between the spaces of objects and morphisms, and also be-

tween the classifying spaces of the categories. Given objects ci = (Mi, ai, τ̃Mi
, fi,OMi

),

i = 1, 2, of C+
d (K) with a0 < a1, by comparison with the corresponding space of mor-

phisms in C̃+
d (K) and the discussion in [GMTW09], Section 5, we can identify the

homotopy type of the space of maps from c0 to c1 as

C+
d (K)(c0, c1) '

∐
[W ]

EDiff+(W ; ∂W )×Diff+(W ;∂W ) map∂(W,K) (5.1)

where map∂(W,K) denotes the space of maps from W to K whose restrictions to

∂0W = M0 and ∂1W = M1 are given by f0 and f1, respectively, and the disjoint union
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is over all oriented cobordisms from M0 to M1, one in each oriented diffeomorphism

class.

More often than the category C+
d (K), we will actually need a variant C+

d,∂(K)

defined in precisely the same way, except that both maps π0(∂0W ) → π0(W ) and

π0(∂1W ) → π0(W ) are required to be surjections for the cobordisms W featured in

the morphism. That is, we only consider those cobordisms W that have the property

that all their connected components have at least one incoming and one outgoing

boundary component. The analogue of equation (5.1) holds for C+
d,∂(K) when we

simply restrict W to run through the representatives of oriented diffeomorphism types

in this more restricted class of cobordisms.

The categories C+
d and C+

d,∂ can now be defined simply as

C+
d = C+

d (pt) and C+
d,∂ = C+

d,∂(pt).

As there is only one map from any space to the one-point space pt, we can view C+
d

and C+
d,∂ as the analogues of C+

d (K) and C+
d,∂(K) obtained by simply omitting the map

into K from the definitions, and this is how we will usually think about C+
d and C+

d,∂.

As a special case of the homotopy equivalence (5.1), we have the equivalence

C+
d (c0, c1) '

∐
[W ]

BDiff+(W ; ∂W ) (5.2)

where the disjoint union is over all diffeomorphism classes of oriented cobordisms

from M0 to M1, and analogously for C+
d,∂(c0, c1).

Let M→ Obj C+
d be the bundle whose fiber over the point (M,a, τ̃M ,OM) is the

manifold M , and similarly define W → Mor C+
d to be the bundle whose fiber over a

point (W,a0, a1, τ̃W ,OW ) is W . We denote by ∂0W and ∂1W the bundles over Mor C+
d

given by the pullbacks of M under the source and target maps

s, t : Mor C+
d → Obj C+

d ,

respectively. We then have obvious inclusions ∂0W ↪→ W and ∂1W ↪→ W . We will
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use the same notations M, W , ∂0W and ∂1W for the corresponding bundles related

to the category C+
d,∂. Under the equivalence (5.2), the restriction of W over C+

d (c0, c1)

corresponds to the bundle

∐
[W ]

EDiff+(W ; ∂W )×Diff+(W ;∂W ) W →
∐
[W ]

BDiff+(W ; ∂W )

and similarly for C+
d,∂.

We will denote by

U : C+
d (K)→ C+

d .

the forgetful functor forgetting the map to K. The fiber of

U : Obj C+
d (K)→ Obj C+

d

over an object (M,a, τ̃M ,OM) ∈ Obj C+
d is map(M,K), and similarly the fiber of

U : Mor C+
d (K)→ Mor C+

d

over a morphism (W,a0, a1, τ̃W ,OW ) ∈ Mor C+
d is map(W,K).

5.2 Madsen–Tillmann spectra

In this section, we will discuss the Madsen–Tillmann spectra relevant to the con-

struction of our field theories, and will construct maps from the spaces of objects

and morphisms of our cobordism categories into Madsen–Tillmann spectra and re-

lated spectra. Later on, these maps will provide the interface between universal

R-orientations and the cobordism category. The principal spectra of interest are

the Madsen–Tillmann spectrum MTSO(d − 1) (which we think of heuristically as

an object knowledgeable about closed (d − 1)-manifolds), the suspension spectrum
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Σ∞+BSO(d) (which we think of as an object which knows about d-manifolds with

boundary), and a spectrum Z(d) defined below (which we view as an object know-

ing about d-manifolds with boundary, where some of the boundary components have

been labeled incoming and the rest as outgoing). Our intuitive perspective on the

spectrum MTSO(d−1) comes from an important theorem of Galatius, Madsen, Till-

mann and Weiss [GMTW09], which identifies the homotopy type of the classifying

space of the cobordism category C+
d−1 as Ω∞−1MTSO(d − 1). We think of this re-

sult as saying that Ω∞−1MTSO(d − 1) represents a kind of groupoid completion of

the cobordism category, and from this point of view, the space Ω∞MTSO(d − 1)

should be thought of as the space of morphisms from the empty (d− 2)-manifold to

itself in the completed category. Thus we think of Ω∞MTSO(d − 1) as related to

the collection of closed (d − 1)-manifolds (that is, the endomorphisms of the empty

manifold in the cobordism category) by a completion process involving the ambient

cobordism category. In particular, we would expect there to be a map that sends a

closed (d− 1)-manifold M to its image under the completion process, and it is in this

way that we think of the adjoint of the map

Σ∞+ Obj C+
d →MTSO(d− 1)

constructed below. A generalization of the Galatius–Madsen–Tillmann–Weiss theo-

rem to manifolds with boundary due to Genauer [Gen09] provides similar justification

for our perspective on the spectrum Σ∞+BSO(d). As for the spectrum Z(d), to our

knowledge the appropriate generalization of the Galatius–Madsen–Tillmann–Weiss

theorem to manifolds with boundary components colored incoming or outgoing has

not been proven, but we believe this to be because of lack of trying; in any case, we

do have a natural map

Σ∞+ Mor C+
d → Z(d)

as constructed below.

We now turn to the technical part of the section. The dimension d oriented

Madsen–Tillmann spectrum MTSO(d) is simply the Thom spectrum BSO(d)−γd ,
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where γd → BSO(d) is the universal oriented d-plane bundle. A prespectrum model

for this spectrum is given by taking the L-th space of the spectrum to be

MTSO(d)L = Gr+
d (RL)γ

⊥
d

where γ⊥d → Gr+
d (RL) is the vector bundle whose fiber over a d-plane V ∈ Gr+

d (RL) is

the orthogonal complement of V inside RL. We observe that this model for MTSO(d)

arises from a spectrum over BSO(d): Let S−γdBSO(d) be the parametrized prespectrum

with L-th space

(S−γdBSO(d))L = i!S
γ⊥d
Gr+d (RL)

where i : Gr+
d (RL) ↪→ Gr+

d (R∞) = BSO(d) is the map induced by the inclusion

RL ↪→ R∞. Then, as suggested by the notation, we have

S−γdBSO(d) ∧BSO(d) S
γd
BSO(d) ' SBSO(d),

and

MTSO(d) = r!S
−γd
BSO(d)

where r is the map r : BSO(d)→ pt.

The Madsen–Tillmann spectra MTSO(d) and MTSO(d − 1) fit into a cofiber

sequence

Σ−1MTSO(d− 1)→MTSO(d)→ Σ∞+BSO(d)
∂−→MTSO(d− 1) (5.3)

where the first map is induced by the maps

Gr+
d−1(RL)→ Gr+

d (R×RL)

sending a (d− 1)-plane V to the d-plane R×V . In more detail, this sequence can be

derived as follows. As is well-known, the unit sphere bundle S(γd) of γd → BSO(d)

is homotopy equivalent to BSO(d− 1). Concretely, using the Grassmannian models
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for BSO(d) and BSO(d− 1), we have the commutative diagram

Gr+
d−1(R∞)

##GGGGGGGGGGGGGG
' // S(γd)

p

~~}}}}}}}}}}}}}

Gr+
d (R×R∞)

where the map

Gr+
d−1(R∞)→ Gr+

d (R×R∞)

sends a (d − 1)-plane V to the d-plane R × V , the map p is the projection, and the

map

Gr+
d−1(R∞)

'−→ S(γd)

sends a (d− 1)-plane V to the point (R× V, (1, 0)); an inverse homotopy equivalence

to this map is given by the map sending a pair (V, v) ∈ S(γd) consisting of an

oriented d-plane V ⊂ R ×R∞ = R∞ and a unit vector v ∈ V to the (d − 1)-plane

V ∩ {v}⊥ equipped with the induced orientation. Now the sphere bundle SγdBSO(d) is

homeomorphic to the fiberwise cofiber of the map

(S(γd), p)+
p−→ (BSO(d), id)+

of ex-spaces over BSO(d), and the sequence (5.3) arises by applying the functor

r!(− ∧BSO(d) S
−γd
BSO(d))

to the cofiber sequence

(S(γd), p)+
p−→ (BSO(d), id)+ → SγdBSO(d) → ΣBSO(d)(S(γd), p)+ (5.4)

over BSO(d) and making use of the homotopy equivalence S(γd) ' BSO(d− 1).

Given an object (M,a, τ̃M ,OM) ∈ Obj C+
d coming from C+

d,L, we obtain a canonical
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map

SL →Mν(M⊂RL) τ̃M−−→ Gr+
d−1(RL)γ

⊥
d−1

where the first map is a Thom collapse map, and hence a point in

ΩLGr+
d−1(RL)γ

⊥
d−1 ⊂ Ω∞MTSO(d− 1).

In this way, we obtain a map

Σ∞+ Obj C+
d →MTSO(d− 1). (5.5)

Similarly, given a morphism (W,a0, a1, τ̃W ,OW ) ∈ Mor C+
d coming from C+

d,L, we ob-

tain a map

[a0, a1]+ ∧ SL → W ν(W⊂[a0,a1]×RL) τ̃W−−→ Gr+
d (R×RL)γ

⊥
d ,

a construction that leads to a map

Σ∞+ Mor C+
d → ΣMTSO(d)I+ (5.6)

making the diagram

Σ∞+ Obj C+
d

//MTSO(d− 1) // ΣMTSO(d)

Σ∞+ Mor C+
d

s

OO

t

��

// ΣMTSO(d)I+

ev0

OO

ev1

��

Σ∞+ Obj C+
d

//MTSO(d− 1) // ΣMTSO(d)

commute. The above diagram suggests that we could map Σ∞+ Mor C+
d into a spectrum

Z(d) defined as the homotopy pullback of the diagram

MTSO(d− 1)→ ΣMTSO(d)←MTSO(d− 1). (5.7)
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Indeed we shall do this, but rather than defining Z(d) as the homotopy pullback of

(5.7), it will be better for us to define Z(d) in a more roundabout way that accords

better with our understanding of the sequence (5.3) as a cofiber sequence arising from

(5.4). Constructing Z(d) and the map

Σ∞+ Mor C+
d → Z(d)

from this point of view will occupy a large part of the remainder of this section, but

the effort will pay off for example in making it easy to check that diagram (5.28)

commutes, a crucial component in the proofs of Lemmas 39 and 40 in Section 5.4.

Remark 31. The ideas behind the construction of the maps (5.5) and (5.6) go back

to [MT01].

To begin the construction of Z(d), recall that a map of f : A → X of pointed

spaces generates a functorial (on the point-set level) cofiber sequence

A
f−→ X

f ′−→ Cf
f ′′−→ ΣA.

Given two maps f0 : A0 → X and f1 : A1 → X, the cofiber sequences generated by

f0 and f1 fit into a braid

A0

g0

&&

f0

""DDDDDDDDDDD
Cf1

f ′′1

&&

g′0

""DDDDDDDDDD
ΣA1

−Σf1

""DDDDDDDDDDD

X

f ′1

<<zzzzzzzzzzz

f ′0

""DDDDDDDDDDD Cf0 ∪X Cf1

g′′1

<<zzzzzzzzzzz

g′′0

""DDDDDDDDDDD
− ΣX

A1

f1

<<zzzzzzzzzzz

g1
88
Cf0

g′1

<<zzzzzzzzzz

f ′′0
88
ΣA0

−Σf0

<<zzzzzzzzzzz

where

A0
g0−→ Cf1

g′0−→ Cf0 ∪X Cf1
g′′0−→ ΣA0
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and

A1
g1−→ Cf0

g′1−→ Cf0 ∪X Cf1
g′′1−→ ΣA1

are homeomorphic to the cofiber sequences generated by the maps g0 = f ′1f0 and

g1 = f ′0f1, respectively. The square on the left is a pushout square, and hence

homotopy cartesian, as the map f ′0 is a cofibration. The diagram commutes strictly,

except for the square on the right, which anticommutes up to a natural homotopy.

Applying Σ∞, we get a braid of distinguished triangles of spectra.

The case where f0 and f1 agree is of special interest. In that case, we obtain the

diagram

A

g0

&&

f

""DDDDDDDDDDDD Cf

f ′′

%%

g′0

""DDDDDDDDDDD ΣA

−Σf

""DDDDDDDDDDDD

X

f ′
<<zzzzzzzzzzz

f ′

""DDDDDDDDDDD Cf ∪X Cf

g′′1

<<zzzzzzzzzzz

g′′0

""DDDDDDDDDDD
− ΣX

A

f

<<zzzzzzzzzzzz

g1
88
Cf

g′1

<<zzzzzzzzzzz

f ′′
99ΣA

−Σf

<<zzzzzzzzzzzz

Notice that g0 = g1 (and that both are null homotopic), while usually g′0 6= g′1 and

g′′0 6= g′′1 ; instead, in both cases the two maps are related by the self-homeomorphism

of Cf ∪X Cf which switches the two copies of Cf . More explicitly, g′′1 is the map that

collapses the first copy of Cf in Cf ∪X Cf to a point, and g′′0 is the map that collapses

the second copy of Cf . The pushout property of the square on the left gives rise to a

map ρ : Cf ∪X Cf → Cf fitting into the diagram

Cf

g′0

""DDDDDDDDDDD
id

''

X

f ′
<<zzzzzzzzzzz

f ′
""DDDDDDDDDDD Cf ∪X Cf

ρ
// Cf

Cf

g′1

<<zzzzzzzzzzz
id

77
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so that ρ is a retraction of g′0 and g′1. We can also define a map

σ : ΣA→ Cf ∪X Cf (5.8)

by setting σ equal to f on the equator, the canonical map to from CA to the second

copy of Cf in Cf ∪X Cf above the equator, and the map from CA to the first copy

of Cf below the equator. Then σ is a section of g′′1 and g′′0 in the sense that we have

canonical homotopies

g′′1σ ' idΣA and g′′0σ ' −idΣA. (5.9)

The following lemma relates the composite f ′′ρ to g′′0 and g′′1 .

Lemma 32. In the above situation, the equation

f ′′ρ = g′′0 + g′′1

holds after passing to the homotopy category of spectra.

Proof. The composite

Cf ∪X Cf
ρ−→ Cf

f ′′−→ ΣA

factors as

Cf ∪X Cf → (Cf ∪X Cf )/X ≈ ΣA ∨ ΣA
∇−→ ΣA

where ∇ is the fold map. The diagram

ΣA

Cf ∪ Cf

g′′1

88qqqqqqqqqqqq

g′′0
&&MMMMMMMMMMMM

// ΣA ∨ ΣA

pr2

OO

pr1

��

∇ // ΣA

ΣA

commutes, so the claim follows by passing to the homotopy category of spectra, where

ΣA ∨ ΣA is a product and the map ∇ represents addition.
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Suppose now (W,a0, a1, τ̃W ,OW ) is a morphism in C+
d . Everything we have said

about cofiber sequences so far works equally well in a parametrized setting when we

form the cofibers and suspensions fiberwise. Given maps

A
i
↪−→ X

p−→ B,

let us denote by CB(X,A) the fiberwise cofiber of the map

(A, pi)+
i−→ (X, p)+

of ex-spaces over B. Observe that the fiber of CB(X,A) over b ∈ B is just the cone

C(Xb, Ab) = Xb∪Ab CAb; in particular, it is (Xb)+ if Ab is empty. Let ik : ∂kW ↪→ W ,

k = 0.1, be the inclusions. Then we have the following diagram of ex-spaces over W .

(∂0W, i0)+

i0

""DDDDDDDDDD

''

CW (W,∂1W )

""DDDDDDDDDD

''

ΣW (∂1W, i1)+

(W, id)+

<<zzzzzzzzzz

""DDDDDDDDDD
CW (W,∂W )

zzzzz

<<zzzzz

DDDDD

""DDDDD

// SτWW
++VVVVVVVVVVVVVVVVVVVVVVVVVVVV

33hhhhhhhhhhhhhhhhhhhhhhhhhhhh
(∂1W, i1)+

i1

<<zzzzzzzzzz

77
CW (W,∂0W )

<<zzzzzzzzzz

77
ΣW (∂0W, i0)+

(5.10)

Here the braided part of the diagram is generated by the maps i0 and i1, and τW

denotes the tangent bundle of W . The maps

CW (W,∂kW )→ SτWW

for k = 0, 1 are given by the zero section of SτWW (at the base of the cone), by the

∞-section of SτWW (at the top of the cone), and by the formula

[x, t] 7→
(
x,
t(1, 0)

1− t

)
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for x ∈ ∂kW and cone coordinate 0 < t < 1, where (1, 0) is to be interpreted as a

vector in R × R∞; observe that by our assumption on what W looks like near its

boundary, (1, 0) is contained in τW and gives a unit normal vector for ∂kW at the

point x. Finally, the map

CW (W,∂W )→ SτWW

in the diagram is defined by the pushout property.

In addition to diagram (5.10), we have the following diagram of ex-spaces over

BSO(d).

(S(γd), p)+

p

!!CCCCCCCCCCC

((

SγdBSO(d)

!!CCCCCCCCCC

''

ΣBSO(d)(S(γd), p)+

(BSO(d), id)+

=={{{{{{{{{{

!!CCCCCCCCCC Z̃(d)

{{{{

=={{{{{

CCCC

!!CCCCC

ρ
// SγdBSO(d)

id

**VVVVVVVVVVVVVVVVVVVVVVVVVVVV

id

44hhhhhhhhhhhhhhhhhhhhhhhhhhhh
(S(γd), p)+

p

=={{{{{{{{{{{

66

SγdBSO(d)

=={{{{{{{{{{

77
ΣBSO(d)(S(γd), p)+

(5.11)

Here the braided part of the diagram is generated by the map p, and ρ is defined by

the pushout property. The counit map

(τ̃W )!S
τW
W = (τ̃W )!(τ̃W )∗SγdBSO(d) → SγdBSO(d)

and the maps generated by the horizontal composites in the diagram

∂kW

ik

��

τ̃∂kW // Gr+
d−1(R∞) ' //

��

S(γd)

p

��

W
τ̃W // Gr+

d (R×R∞) BSO(d)

together define a map from the (τ̃W )!-pushforward of diagram (5.10) to the diagram

(5.11). Applying the functor r!(−∧BSO(d) S
−γd
BSO(d)) to this map and making use of the

homotopy equivalence S(γd) ' BSO(d − 1), we obtain a map from the diagram of
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spectra

Σ−1∂0W
−T∂0W

''

!!DDDDDDDDDDD
(W−TW ,Σ−1∂1W

−T∂1W )
''

!!DDDDDDDDDD
∂1W

−T∂1W

W−TW

==zzzzzzzzzzz

!!DDDDDDDDDDD (W−TW ,Σ−1∂W−T∂W ) //

zzzzz

==zzzzz

DDDDD

!!DDDDD

Σ∞+W
**VVVVVVVVVVVVVVVVVVVVVVVVVVV

44hhhhhhhhhhhhhhhhhhhhhhhhhhh

Σ−1∂1W
−T∂1W

77

==zzzzzzzzzzz
(W−TW ,Σ−1∂0W

−T∂0W )
77

==zzzzzzzzzz

∂0W
−T∂0W

(5.12)

to the diagram

Σ−1MTSO(d− 1)
''

!!DDDDDDDDDD
Σ∞+BSO(d)

∂

''

!!DDDDDDDDDD
MTSO(d− 1)

MTSO(d)

==zzzzzzzzzz

!!DDDDDDDDDD
Z(d)

ρ
//

zzzzz ∂̃1

==zzzzz

DDDDD
∂̃0

!!DDDDD

Σ∞+BSO(d)

id
**VVVVVVVVVVVVVVVVVVVVVVVV

id

44hhhhhhhhhhhhhhhhhhhhhhhh
Σ−1MTSO(d− 1)

77

==zzzzzzzzzz
Σ∞+BSO(d)

∂

77

==zzzzzzzzzz
MTSO(d− 1)

(5.13)

where we are now working in the homotopy category of spectra. It is in this way that

we define the spectrum Z(d): we have

Z(d) = r!

(
Z̃(d) ∧BSO(d) S

−γd
BSO(d)

)
where Z̃(d) is the spectrum over BSO(d) defined as a pushout in diagram (5.11).

Remark 33. We note parenthetically that we can identify the homotopy type of Z(d):

together with the maps

∂̃0, ∂̃1 : Z(d)→MTSO(d− 1),
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the map

ρ : Z(d)→ Σ∞+BSO(d)

gives rise to two different splittings

(ρ, ∂̃0) : Z(d)
'−→ Σ∞+BSO(d) ∨MTSO(d− 1)

and

(ρ, ∂̃1) : Z(d)
'−→ Σ∞+BSO(d) ∨MTSO(d− 1).

Assuming that our morphism (W,a0, a1, τ̃W ,OW ) comes from C+
d,L, we get a map

[a0, a1]+ ∧ SL → W ν(W⊂[a0,a1]×RL)

= r!

(
S0
W ∧W S

ν(W⊂[a0,a1]×RL)
W

)
→ r!

(
CW (W,∂W ) ∧W S

ν(W⊂[a0,a1]×RL)
W

)
= (W−TW ,Σ−1∂W−T∂W )L+1

(5.14)

where the second map is induced by the inclusion S0
W ↪→ CW (W,∂W ) of ex-spaces

over W . Using the cone coordinates in CW (W,∂W ), we can extend the map (5.14)

to a map

SL+1 = (R ∪ {∞}) ∧ SL → (W−TW ,Σ−1∂W−T∂W )L+1 (5.15)

which gives us a map of spectra

S → (W−TW ,Σ−1∂W−T∂W ), (5.16)

a model for the Spanier-Whitehead dual of the map W+ → S0. Composing with the

map

(W−TW ,Σ−1∂W−T∂W )→ Z(d),

we obtain a map S → Z(d), or equivalently a point in Ω∞Z(d). In this way, we obtain

a map

Σ∞+ Mor C+
d → Z(d). (5.17)

Alternatively, we could observe that our constructions have been natural enough so
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that they can be performed fiberwise over Mor C+
d to give a map

SMor C+d
→ DW → r∗Z(d) (5.18)

where DW is the spectrum over Mor C+
d whose fiber over the point (W,a0, a1, τ̃W ,OW )

is the spectrum (W−TW ,Σ−1∂W−T∂W ). Taking the adjoint of (5.18) now gives the

map (5.17). Tracing through the constructions, the map σ of (5.8) gives rise to a

map

MTSO(d− 1)→ Z(d), (5.19)

and we will use the composite

Σ∞+ Obj C+
d →MTSO(d− 1)→ Z(d)

to extend the map (5.17) to a map

Σ∞+ Mor C+
d = Σ∞+ Obj C+

d ∨ Σ∞+ Mor C+
d → Z(d).

The maps ∂̃k are compatible with the source and target maps of C+
d in the following

sense.

Proposition 34. In the diagram

Σ∞+ Obj C+
d

−

Σ∞+ Mor C+
d

soo t // Σ∞+ Obj C+
d

MTSO(d)
��

Z(d)
∂̃0oo

∂̃1 //

��

MTSO(d)
��

(5.20)

the square on the right commutes up to homotopy while the square on the left anti-

commutes up to homotopy.

Proof. On the summand Σ∞+ Obj C+
d of Σ∞+ Mor C+

d , the claim follows from the homo-

topy equivalences (5.9). Let us concentrate on the summand Σ∞+ Mor C+
d . Suppose
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(W,a0, a1, τ̃W ,OW ) ∈ Mor C+
d comes from C+

d,L. We then have the commutative dia-

gram

SL+1 = (R ∪ {∞}) ∧ SL

π

��

r!

(
CW (W,∂W ) ∧W S

ν(W⊂[a0,a1]×RL)
W

)

��

(W−TW ,Σ−1∂W−T∂W )L+1
//

��

Z(d)L+1

∂̃0

��

r!

(
ΣW (∂0W, i0)+ ∧W S

ν(W⊂[a0,a1]×RL)
W

)

Σ∂0W
ν(∂0W⊂RL) (∂0W

−T∂0W )L+1
//MTSO(d− 1)L+1

where π is the extension (5.15) of the map (5.14). The map π reverses the suspension

coordinate R ∪ {∞} when mapping it to the cone coordinate in CW (W,∂0W ) ⊂
CW (W,∂W ), and now inspection shows that the composite of the maps on the left in

the above diagram is the negative of the suspension of the map

SL → ∂0W
ν(∂0W⊂RL)

associated with s(W,a0, a1, τ̃W ,OW ) ∈ Obj C+
d . Thus the anticommutativity of the

square on the left in diagram (5.20) follows. For ∂1W , the map π preserves the

direction of the suspension coordinate when mapping it to the cone coordinate in

CW (W,∂1W ), and the commutativity of the square on the right in diagram (5.20)

follows from a diagram similar to the one above.

Let us define

∂0 = −∂̃0 : Z(d)→MTSO(d)

and

∂1 = ∂̃1 : Z(d)→MTSO(d).
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With this notation, Proposition 34 states that the diagram

Σ∞+ Obj C+
d Σ∞+ Mor C+

d
soo t // Σ∞+ Obj C+

d

MTSO(d)
��

Z(d)
∂0oo

∂1 //

��

MTSO(d)
��

(5.21)

commutes (in the homotopy category). Moreover, from the fiberwise version of

Lemma 32 we obtain

∂ρ ' ∂̃0 + ∂̃1 : Z(d)→MTSO(d− 1)

so that we get the equivalence

∂ρ ' ∂1 − ∂0 : Z(d)→MTSO(d− 1). (5.22)

So far we have succeeded in constructing maps

Σ∞+ Obj C+
d →MTSO(d− 1) and Σ∞+ Mor C+

d → Z(d);

our next goal is to generalize these maps to maps

Σ∞+ Obj C+
d (K)→MTSO(d− 1) ∧K+ and Σ∞+ Mor C+

d (K)→ Z(d) ∧K+

involving a background space K. Let us first consider the map featuring Obj C+
d (K).

Suppose (M,a, τ̃M ,OM) ∈ C+
d comes from C+

d,L. Then for a map f : M → K, we have

a map

SL →Mν(M⊂RL) → Gr+
d−1(RL)γ

⊥
d−1 ∧K+

where the first map is the Pontryagin–Thom collapse map associated with the tubular

neighborhood OM , and the second map is induced by the map

(τ̃M , f) : M → Gr+
d−1(RL)×K.
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In this way, we get a map

map(M,K)+ → ΩL(Gr+
d−1(RL)γ

⊥
d−1 ∧K+)→ Ω∞(MTSO(d− 1) ∧K+)

and more generally a map

Obj C+
d (K)+ → Ω∞(MTSO(d− 1) ∧K+). (5.23)

The desired map

Σ∞+ Obj C+
d (K)→MTSO(d− 1) ∧K+.

is now the adjoint of (5.23).

Let us next consider the construction of the map

Σ∞+ Mor C+
d (K)→ Z(d) ∧K+.

Suppose (W,a0, a1, τ̃W ,OW ) ∈ Mor C+
d comes from C+

d,L. Given a map

φ : (τ̃W )!X → Y

of ex-spaces over BSO(d), we can construct a map

X ∧map(W,K)+ → (τ̃W )∗(Y ∧K+) (5.24)

over W by sending a point x ∧ f in the fiber over w ∈ W to the point φ̃(x) ∧ f(w),

where

φ̃ : X → (τ̃W )∗Y

is the adjoint of φ. Taking the adjoint of the map (5.24), we see that φ induces a map

(τ̃W )!(X ∧map(W,K)+)→ Y ∧K+.

Applying this construction to the map from the (τ̃W )!-pushforward of diagram (5.10)

to the diagram (5.11), then applying the functor r!(− ∧BSO(d) S
−γd
BSO(d)), and making
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use of the homotopy equivalence S(γd) ' BSO(d−1), we get a map from the diagram

of spectra

Σ−1∂0W
−T∂0W

&&

""FFFFFFFFF
(W−TW ,Σ−1∂1W

−T∂1W )
&&

""FFFFFFFF
∂1W

−T∂1W

W−TW

<<xxxxxxxxx

""FFFFFFFFF (W−TW ,Σ−1∂W−T∂W ) //

xxxx

<<xxxx

FFFF

""FFFF

Σ∞+W
++WWWWWWWWWWWWWWWWWWWWWWW

33ggggggggggggggggggggggg

Σ−1∂1W
−T∂1W

88

<<xxxxxxxxx
(W−TW ,Σ−1∂0W

−T∂0W )
88

<<xxxxxxxx

∂0W
−T∂0W


∧map(W,K)+

(5.25)

to the diagram

Σ−1MTSO(d− 1)
&&

""EEEEEEEE
Σ∞+BSO(d)

∂

&&

""EEEEEEEE
MTSO(d− 1)

MTSO(d)

<<yyyyyyyy

""EEEEEEEE
Z(d)

ρ
//

yyyy ∂̃1

<<yyyy

EEEE
∂̃0

""EEEE

Σ∞+BSO(d)

id
++VVVVVVVVVVVVVVVVVVVV

id

33hhhhhhhhhhhhhhhhhhhh
Σ−1MTSO(d− 1)

88

<<yyyyyyyy
Σ∞+BSO(d)

∂

88

<<yyyyyyyy
MTSO(d− 1)


∧K+

(5.26)

where again we are working in the homotopy category. In particular, we get a map

(W−TW ,Σ−1∂W−T∂W ) ∧map(W,K)+ → Z(d) ∧K+,

and composing with the map

S ∧map(W,K)+ → (W−TW ,Σ−1∂W−T∂W ) ∧map(W,K)+

induced by the map (5.16), we get a map

Σ∞+ map(W,K)→ Z(d) ∧K+.
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Our constructions have been sufficiently natural to work fiberwise over Mor C+
d , and

so we get a map

Σ∞
Mor C+d

(Mor C+
d (K), U)+ → r∗(Z(d) ∧K+)+

whose adjoint gives us a map

Σ∞+ Mor C+
d (K)→ Z(d) ∧K+.

Pairing this map with the map

Σ∞+ Obj C+
d (K)→MTSO(d− 1) ∧K+ → Z(d) ∧K+

where the second map is induced by the map (5.19), we obtain the desired map

Σ∞+ Mor C+
d (K) = Σ∞+ Obj C+

d (K) ∨ Σ∞+ Mor C+
d (K)→ Z(d) ∧K+.

The analogue of Proposition 34 holds for the maps we have constructed, giving

rise to the homotopy commutative diagram

Σ∞+ Obj C+
d (K) Σ∞+ Mor C+

d (K)soo t // Σ∞+ Obj C+
d (K)

MTSO(d) ∧K+

��

Z(d)
∂0∧K+

oo
∂1∧K+

//

��

MTSO(d) ∧K+

��

(5.27)

For later use, we also note that as part of the map from (5.25) to (5.26), we have the

homotopy commutative square

(W−TW ,Σ−1∂W−T∂W ) ∧map(W,K) //

��

Z(d) ∧K+

ρ

��

Σ∞+ (W ×map(W,K))
(τ̃W prW ,ev)

// Σ∞+ (BSO(d)×K)

(5.28)
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which is the fiber over (W,a0, a1, τ̃W ,OW ) of the homotopy-commutative square

DW ∧Mor C+d
( Mor C+

d (K), U)+
//

��

r∗(Z ∧K+)

��

Σ∞
Mor C+d

(W , πW)+ ∧Mor C+d
( Mor C+

d (K), U)+ // r∗Σ∞+ (BSO(d)×K)

(5.29)

of spectra over Mor C+
d . The commutativity of the square (5.28) will play an important

role in the proofs of Lemmas 39 and 40 below.

5.3 A fiber bundle approximation

Let W be a connected cobordism between non-empty closed 1-manifolds. According

to [CM07], Section 4.2, the fibers of the fibration

map(W,BG)
s−→ map(∂0W,BG). (5.30)

given by restriction of maps to the incoming boundary have the homotopy type of

ΩBG−χ(W ) ' G−χ(W ), whence Theorem 26 implies that the space map(W,BG) is

Costenoble–Waner map(∂0W,BG)-dualizable. The aim of this section is to prove the

following more precise result. In particular, it identifies the spectrum

ev∗w0
S
χ(W )ad(EG)
BG

over map(W,BG) as the twist involved in the pretransfer map induced by s. Here

ad(EG) denotes the vector bundle

EG×G g→ BG
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over BG, where g is the Lie algebra of G equipped with the adjoint action,

evw0 : map(W,BG)→ BG

is the map given by evaluation against a fixed point w0 of W , and χ(W ) denotes the

Euler characteristic of W .

Proposition 35. Choose a basepoint w0 ∈ W . Then the spectrum ev∗w0
S
χ(W )ad(EG)
BG

over map(W,BG) is a Costenoble–Waner map(∂0W,BG)-dual of Smap(W,BG).

We will prove Proposition 35 by comparing the fibration (5.30) to a fiber bundle

where the fiberwise Costenoble–Waner dual of the total space can be identified using

the results in [MS06]. Let g be the genus of W , and let p and q denote the number

of incoming and outgoing boundary components of W , respectively. Then we can

view W as obtained from a regular 4g-gon with p + q open disks removed from the

interior by identifying edges pairwise in the usual pattern. (If g = 0, we consider

W as obtained from a disk with p + q holes by collapsing the boundary circle to a

point.) Choose a vertex of the polygon (or, if g = 0, pick any point on the boundary

of the disk). Choose an embedding φ of the wedge sum
∨p+q−1 S1 to the polygon (or

disk) such that φ is smooth away from the basepoint
∨p+q−1 S1, such that φ sends

the basepoint of to the chosen vertex of the polygon (or to the chosen point of the

boundary circle) and all other points to the interior of the polygon (or disk), and such

that the image of φ restricted to each summand of
∨p+q−1 S1 surrounds precisely one

of the disks removed from the polygon (or disk), with all of the p + q removed disks

except for one corresponding to an outgoing boundary component surrounded by one

of the summands of
∨p+q−1 S1 in this way. Now combining φ with the embedding

2g∨
S1 → W

given by the boundary edges of the polygon, we obtain an embedding

n∨
S1 =

( p+q−1∨
S1
)
∨
( 2g∨

S1
)
→ W, (5.31)
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where we have denoted n = 2g+ p+ q− 1 = 1−χ(W ). Expanding the disks removed

from the polygon (or disk) gives a deformation retraction from W to the image of

the embedding (5.31), and from the construction of (5.31), we obtain a homotopy-

commutative diagram ∐p S1 //

≈

��

∨n S1

'

��

∂0W //W

(5.32)

in which the top horizontal map factors as

p∐
S1 →

p∨
S1 ↪→

n∨
S1,

where the first map is given by the identification of the basepoints of the p copies of

S1 and the second map is given by inclusion of summands.

Diagram (5.32) induces a homotopy-commutative diagram

map(W,BG) s //

'

��

map(∂0W,BG)

≈

��

LBG×BGn // LBGp

(5.33)

where ×BG indicates fiberwise product over BG, the map from LBG to BG being

given by evaluation at the basepoint of S1. It is well-known that

EG×G Gad ' LBG

and for example from [Gru07], Appendix A, we know that this equivalence can be

realized by a zigzag of weak equivalences of spaces over BG where the structure map

of each space over BG is a fibration. It follows that we have an equivalence

map(S1, BG)×BGn ' (EG×G Gad)×BGn ≈ EG×G (Gad)n
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where the action of G on (Gad)n is the diagonal one. Thus we get a homotopy-

commutative diagram

LBG×BGn //

'

LBGp

'

EG×G (Gad)n // (EG×G Gad)p

(5.34)

where i-th coordinate function of the bottom horizontal map is induced by the pro-

jection

(Gad)n → Gad

to the factor corresponding to the i-th incoming boundary component of W .

We would like to replace the bottom horizontal map in (5.34) by a fiber bundle.

To this end, observe that we have the homotopy-commutative diagram

EG×G (Gad)n
∆̃
'

//

pr

��

EGp ×G (Gad)n

pr

}}zzzzzzzzzzzzzzzzzzzzzzzzzz

EG×G (Gad)p

∆̃ '

��

EGp ×G (Gad)p

��

EGp ×Gp (Gad)p

≈

(EGp ×G Gad)p

(5.35)

where the maps labeled ∆̃ are induced by the diagonal map

EG
'−→ EGp
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and the maps labeled pr are induced by the projection

(Gad)n → (Gad)p

onto the factors corresponding to the incoming boundary components of W . The

action of G on products is the diagonal one, and the second-last vertical map is

induced by the diagonal inclusion G ↪→ Gp. Notice that the composite of the vertical

maps on the left is the bottom horizontal map of diagram (5.34)

We will show that composite map from the top right hand corner to the bottom

in diagram (5.35) is a fiber bundle. Let

P = EGp × (Gad)p.

Then the coordinatewise right actions make P into a principal Gp-bundle. Denote

X = Gn−p × (Gp/∆G)

where ∆G ⊂ Gp is the diagonal subgroup, and let Gp act on X from the left by

γ̄ · (ḡ, ḡ′∆G) = (γ1ḡγ
−1
1 , γ̄ḡ′∆G)

where ḡ ∈ Gn−p and γ̄ = (γ1, . . . , γp) and ḡ′ are elements of Gp. Then the projection

map

P ×Gp X → P/Gp (5.36)

is homeomorphic to the composite

EGp ×G (Gad)n → (EG×G Gad)p

in diagram (5.35). Thus we get the diagram

EG×G (Gad)n //

'
��

(EG×G Gad)p

≈
��

P ×Gp X // P/Gp

(5.37)
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Combining diagrams (5.33), (5.34) and (5.37), we get a homotopy-commutative dia-

gram

map(W,BG) s //

'

map(∂0W,BG)

'

P ×Gp X // P/Gp

(5.38)

Thus we have succeeded in our goal of showing that s is equivalent to a fiber bundle.

Our next aim is to identify explicitly the Costenoble–Waner P/Gp-dual of P×GpX.

By Theorem 18.6.1, Proposition 18.3.2 and Corollary 19.4.4 of [MS06], this dual is

S−τvertP×GpX , where τvert is the vertical tangent bundle of (5.36), so our task is to identify

the isomorphism type of τvert. We have a diffeomorphism

Gp/∆G
≈−→ Gp−1

sending ḡ∆G with ḡ = (g1, . . . , gp) to the point (g2g
−1
1 , . . . , gpg

−1
1 ), and under this

diffeomorphism the left translation action of Gp corresponds to the action of Gp on

Gp−1 given by

(γ1, . . . , γp) · (g1, . . . , gp−1) = (γ2g1γ
−1
1 , . . . , γpgp−1γ

−1
1 ).

Crossing with the identity map of Gn−p, the diffeomorphism gives us a diffeomorphism

X = Gn−p × (Gp/∆G) ≈ Gn−1

Let V = gn−1, and let Gp act on V via the projection

Gp → G

onto the first factor and the diagonal action of G on gn−1. By inspection, we have a

pullback square of Gp-spaces

TX //

��

V

��

X // pt

(5.39)
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and hence, by applying P ×Gp (−), a pullback square

τvert //

��

P ×Gp V

��

P ×Gp X // P/Gp

(5.40)

In particular, the vertical tangent bundle τvert is a pullback of a bundle over its base

space.

To analyze P ×Gp V , observe that

P ×Gp V = (EGp × (Gad)p)×Gp V = EGp ×Gp ((Gad)p × V )

where we have converted the right action of Gp on (Gad)p to a left one. We have the

pullback square of Gp-spaces

(Gad)p × V //

��

V

��

(Gad)p // pt

(5.41)

and applying EGp ×Gp (−), we obtain a pullback square

P ×Gp V //

��

EGp ×Gp V

��

P/Gp // BGp

(5.42)

Furthermore, recalling the action of Gp on V , we see that there is a pullback square

EGp ×Gp V //

��

(n− 1)ad(EG)

��

BGp
pr1 // BG

(5.43)

where pr1 is projection onto the first coordinate. Combining the pullback squares
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(5.40), (5.42) and (5.43), we obtain the pullback square

τvert //

��

(n− 1)ad(EG)

��

P ×Gp X // BG

(5.44)

Under the equivalence

map(W,BG) ' P ×Gp X

of (5.38), the classifying map

P ×Gp X → BG

obtained in (5.44) for τvert corresponds to the map

evw : map(W,BG)→ BG (5.45)

given by evaluation against the point w that is the image of the basepoint of
∨n S1

under the embedding (5.31). Since W is path connected, the map evw and the map

evw0 of Proposition 35 are homotopic. Recalling that χ(W ) = 1 − n, the claim in

Proposition 35 follows.

Remark 36. In the above argument, the first coordinate of Gp seemed to play a special

role, but this is of course illusory. We have a commutative diagram

P ×Gp X

≈

EG×G (Gad)n
∆̃
'
//

��

EGp ×G (Gad)n

��

BG
∆ // BGp

pri

��

BG
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where the map pri is projection onto the i-th coordinate. For i = 1, the composite of

the right hand vertical maps is the classifying map for τvert obtained in (5.44). How-

ever, it turns out that the composites of the right hand vertical maps are homotopic

for all i: one just needs to observe that the composite map from EG ×G (Gad)n to

BG in the diagram is independent of i.

5.4 The field-theory operations

In this section, we will finally construct our field-theory operations. Our main result

is Theorem 41, which, given a commutative S-algebra R and a piece of orientation

data we call a universal R-orientation, asserts the existence of a field theory op-

eration associated to a single cobordism W . This operation goes from a twisted

version of the R-homology of map(∂0W,BG) to a twisted version of the R-homology

of map(∂1W,BG), and arises from a pull–push construction in the diagram

map(∂0W,BG) map(W,BG)soo t //map(∂1W,BG),

where the maps s and t are given by restriction. The role of the universalR-orientation

is to give rise to the R-theory twistings of map(∂0W,BG) and map(∂1W,BG), and to

provide a compatibility relation between the pullbacks of these twistings to the space

map(W,BG).

To prepare the way to the definition of the notion of a universal R-orientation, let

us begin by introducing notation. Let σg denote the composite

σg : Σ∞+ (BSO(2)×BG)
pr−→ Σ∞+BG

g−→ ko

where the latter map classifies the vector bundle ad(EG) = (EG×G g→ BG), where

g denotes the Lie algebra of G. Likewise, let σd be the composite

σd : Σ∞+ (BSO(2)×BG)→ Σ∞+ pt
d−→ ko

where d is the dimension of G and the latter map classifies the d-dimensional trivial
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bundle. We have a short exact sequence of KO-groups

0→ K̃O(BSO(2)+ ∧BG)→ KO(BSO(2)×BG)→ KO(BSO(2))→ 0,

and we let

σ̄g : Σ∞+BSO(2) ∧BG→ ko

be a map representing a lift of the difference σg − σd from the group in the middle

to the one on the left. Let R be an commutative S-algebra, that is, a commutative

monoid in some suitable category of spectra. Inspired by Freed, Hopkins and Teleman

[FHT07a], we make the following definition.

Definition 37. A universal R-orientation is a null homotopy of the composite

MTSO(2) ∧BG→ Σ∞+BSO(2) ∧BG σ̄g−→ ko→ line•(R)

Two universal R-orientations are called equivalent if the null homotopies are homo-

topy equivalent.

Here the spectrum line•(R) and the map ko → line•(R) were discussed in Sec-

tion 3.6. We observe that by standard arguments, if a universal R-orientation exists,

then the set of equivalence classes of universal R-orientations is a torsor over the

abelian group

[ΣMTSO(2) ∧BG, line•(R)],

and that a universal R-orientation is equivalent data to the choice of a map ε together

with a homotopy making the diagram

Σ∞+BSO(2) ∧BG //

σ̄g

��

MTSO(1) ∧BG

ε

��

ko

19

// line•(R)

(5.46)

commutative. In fact, it is in terms of the dotted data in diagram (5.46) that we will

usually think of a universal R-orientation.
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The notion of a universal R-orientation would not be a very useful one if such

orientations did not exist. Luckily, the existence of universal R-orientations is fairly

common, as demonstrated by the following proposition. Recall that a cohomology

theory is called complex oriented if every complex vector bundle comes equipped with

a canonical orientation with respect to the theory. Examples of such theories include

ordinary cohomology HZ, complex K-theory K, and complex cobordism MU .

Proposition 38. Suppose R represents a complex-oriented cohomology theory. Then

there exists a canonical universal R-orientation.

Proof. The proof of the first part of Theorem 3.24 in [FHT07a] goes through with

line•(R) in place of the spectrum picgK considered in [FHT07a], giving the desired

result.

Let us now fix a universal R-orientation. The composite

Σ∞+ Obj C+
2,∂(BG)→ Σ∞+ Obj C+

2 (BG)→MTSO(1) ∧BG+ →

→MTSO(1) ∧BG ε−→ line•(R)

defines an R-line bundle E over the space Obj C+
2,∂(BG). Likewise, the composites

Σ∞+ Mor C+
2,∂(BG)→ Σ∞+ Mor C+

2 (BG)→ Z(2) ∧BG+
ρ∧BG+−−−−→

ρ∧BG+−−−−→ Σ∞+BSO(2) ∧BG+ = Σ∞+ (BSO(2)×BG)
σg−→ ko

and

Σ∞+ Mor C+
2,∂(BG)→ Σ∞+ Mor C+

2 (BG)→ Z(2) ∧BG+
ρ∧BG+−−−−→

ρ∧BG+−−−−→ Σ∞+BSO(2) ∧BG+ = Σ∞+ (BSO(2)×BG)
σd−→ ko

give rise to S-line bundles Tg and Td over the space Mor C+
2,∂(BG), respectively. We

observe that Td is the pullback of the S-line bundle T ′d over Mor C+
2,∂ classified by the
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composite

Σ∞+ Mor C+
2,∂

//Σ∞+ Mor C+
2

//Z(2)
ρ
//Σ∞+BSO(2) //Σ∞+ pt d //ko.

Frequently, we will need the just the parts of E , Tg and Td that lie over a fixed

object or morphism of C+
2,∂. Given an object M = (M,a, τ̃M ,OM) of C+

2,∂, we will

denote by EM the restriction of E to the fiber map(M,BG) over M ∈ Obj C+
2,∂ of the

forgetful map

U : Obj C+
2,∂(BG)→ Obj C+

2,∂.

Similarly, given a morphism W = (W,a0, a1, τ̃W ,OW ) of C+
2,∂, we define Tg,W and

Td,W to be the restrictions of Tg and Td to the fiber map(W,BG) over the point

W ∈ Mor C+
2,∂ of the forgetful map

U : Mor C+
2,∂(BG)→ Mor C+

2,∂.

Furthermore, we will denote by T ′d,W the fiber of T ′d over the point W ∈ Mor C+
2,∂. We

observe that Td,W is then a pullback of T ′d,W , and hence a trivial S-line bundle.

Consider the diagram

Σ∞+ Mor C+
2,∂(BG)

(s,t)
//

��

(Σ∞+ Obj C+
2,∂(BG))×2

��

Σ∞+ Mor C+
2 (BG)

(s,t)
//

��

(Σ∞+ Obj C+
2 (BG))×2

��

Z(2) ∧BG+
(∂0,∂1)

//

ρ

��

(MTSO(1) ∧BG+)×2

(−id,id)

��

Σ∞+BSO(2) ∧BG+
∂ //

��

MTSO(1) ∧BG+

��

Σ∞+BSO(2) ∧BG ∂ //

σ̄g

��

MTSO(1) ∧BG
ε

��

ko //

/7hhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhh line•(R)
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Each square in the diagram is at least homotopy commutative. The second square

from the top commutes by diagram (5.27), and for the third square from top, the

commutativity follows from equation (5.22). For the bottom square, the map ε and

the indicated homotopy are given by the universal R-orientation. For the remaining

squares, the commutativity is obvious. From the homotopy commutativity of the

diagram, we deduce the existence of an equivalence

(Tg ∧Mor C+2,∂(BG) T
−1
d ) ∧R ' t∗E ∧R,Mor C+2,∂(BG) (s∗E)−1 (5.47)

of R-line bundles over Mor C+
2,∂(BG), and we can rewrite this equivalence as an equiv-

alence

s∗E ∧Mor C+2,∂(BG) Tg ' t∗E . ∧Mor C+2,∂(BG) Td (5.48)

Let us now fix a non-identity morphism W = (W, a0, a1, τ̃W ,OW ) of C+
2,∂. Then

the source and target maps in the category C+
2,∂(BG) restrict to give a diagram

map(∂0W,BG) map(W,BG)soo t //map(∂1W,BG), (5.49)

and the equivalence (5.48) restricts to an equivalence

s∗E∂0W ∧map(W,BG) Tg,W ' t∗E∂1W ∧map(W,BG) Td,W (5.50)

of R-line bundles over map(W,BG).

The following lemma is a key step in the construction of the field theory operations,

as it identifies Tg,W as the twisting associated with the umkehr map induced by the

map s in diagram (5.49).

Lemma 39. The spectrum Tg,W over the mapping space map(W,BG) is a Costenoble–

Waner map(∂0W,BG)-dual of Smap(W,BG).
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Proof. By diagram (5.28), the diamond in the diagram

Σ∞+ map(W,BG)

S ∧map(W,BG)+

��

(W−TW ,Σ−1∂W−T∂W ) ∧map(W,BG)+

xxpppppppppppppp

&&NNNNNNNNNNNNNN

Z(2) ∧BG+

ρ

&&NNNNNNNNNNNNNN
(Σ∞+W ) ∧map(W,BG)+

(τ̃W prW ,ev)

xxpppppppppppppp

ev

vv

Σ∞+ (BSO(2)×BG)

��

Σ∞+BG

g

��

ko

(5.51)

commutes up to homotopy. Observe that the spectrum Tg,W over map(W,BG) is

classified by the composite map down from the top to the bottom of the diagram

along the left-hand route. Let us first consider the case where W is connected. From

Spanier–Whitehead duality theory, we know that the map

S → (W−TW ,Σ−1∂W−T∂W )→ Σ∞+W

that features in the composite down the right-hand route represents χ(W ) times the

generator of πs0(W+) ≈ Z. On the other hand, the generator of πs0(W+) is represented
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by any map of spaces

w0 : S0 → W+

where the non-basepoint point of S0 is sent to a point w0 of W . Thus the composite

down along the right-hand route is equivalent to χ(W ) times the map

Σ∞S0 ∧map(W,BG)+
w0−→ Σ∞+ (W ×map(W,BG))

ev−→ Σ∞+BG
g−→ ko

whence the claim follows from Proposition 35. This proves the lemma in the case

where W is connected.

Suppose now W consists of connected components W1, . . . ,Wk. Then our fibration

map(W,BG)→ map(∂0W,BG)

is the product of the fibrations

map(Wi, BG)→ map(∂0Wi, BG),

i = 1, . . . , k. Let

πi : map(W,BG) ≈
k∏
i=1

map(Wi, BG)→ map(Wi, BG)

be the projection. In general, if E1 → B1 and E2 → B2 are fibrations whose fibers are

Costenoble–Waner dualizable, and Ti is a Costenoble–Waner Bi-dual for SEi , i = 1, 2,

then the product map

E1 × E2 → B1 ×B2

is a fibration with Costenoble–Waner dualizable fibers, and SE1×E2 has B1×B2-dual

π̄∗1T1 ∧E1×E2 π̄
∗
2T2

where

π̄i : E1 × E2 → Ei,



5.4. THE FIELD-THEORY OPERATIONS 99

i = 1, 2 are the projections. In terms of classifying maps, we thus want to show that

Tg,W is classified by the sum
k∑
i=1

π∗i T cl
g,Wi

where T cl
g,Wi

is a classifying map for Tg,Wi
.

In the commutative diagram

Σ∞+ map(W,BG)
πi // Σ∞+ map(Wi, BG)

S ∧map(W,BG)+
πi //

��

S ∧map(Wi, BG)+

��

(W−TWi
i ,Σ−1∂W−T∂Wi

i )

∧map(W,BG)+

πi //

ev
##GGGGGGGGGGG

(W−TWi
i ,Σ−1∂W−T∂Wi

i )

∧map(Wi, BG)+

ev
{{wwwwwwwwwww

Σ∞+BG

g

��

ko

the composite map from the top left hand corner to ko along the top and the right

hand side of the diagram is π∗i T cl
g,Wi

, so the composite along the left hand side of the

diagram also provides a classifying map for π∗i Tg,Wi
. Now the claim follows from the

observation that the map

S → (W−TW ,Σ−1∂W−T∂W )

is equivalent to the composite

S →
k∨
S →

k∨
i=1

(W−TWi
i ,Σ−1∂W−T∂Wi

i )
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where the first map is the k-fold pinch map and the second map is the wedge of the

maps

S → (W−TWi
i ,Σ−1∂W−T∂Wi

i ),

i = 1, . . . , k.

Lemma 40. The spectrum T ′d,W over the point W ∈ Mor C+
2,∂ is equivalent to Sχ(W )d,

so that the spectrum Td,W over map(W,BG) is equivalent to S
χ(W )d
map(W,BG).

Proof. We have the homotopy-commutative diagram

Σ∞+ {W}

S

��

(W−TW ,Σ−1∂W−T∂W )

wwppppppppppppppp

''NNNNNNNNNNNNNN

Z(2)

ρ

''NNNNNNNNNNNNNNN
Σ∞+W

τ̃W

wwpppppppppppppp

uu

Σ∞+BSO(2)

��

Σ∞+ pt

d

��

ko

(5.52)

The composite from top to bottom along the left-hand route classifies T ′d,W . On the

other hand, from Spanier–Whitehead duality theory of manifolds, we know that the

composite map

S → (W−TW ,Σ−1∂W−T∂W )→ Σ∞+W → Σ∞+ pt ' S
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contained in path from top to bottom along the right-hand route is the map of degree

χ(W ). The claim follows.

We are now ready to construct the field-theory operation associated with a mor-

phism W of C+
2,∂. The following theorem is the main result of the second half of this

thesis.

Theorem 41. Suppose Mi = (Mi, ai, τ̃Mi
,OMi

), i = 0, 1, are objects of C+
2,∂. Then a

non-identity morphism W = (W,a0, a1, τ̃W ,OW ) from M0 to M1 induces a map

H•(map(M0, BG); EM0)→ H•−dχ(W )(map(M1, BG); EM1) (5.53)

in the homotopy category of R-modules.

Proof. The source and target maps in the category C+
2,∂(BG) restrict to give us the

diagram

map(M0, BG)
s←− map(W,BG)

t−→ map(M1, BG). (5.54)

The map (5.53) is now the composite

H•(map(M0, BG); EM0)
s�

−−→H•(map(W,BG); s∗EM0 ∧map(W,BG) Tg,W )

' H•(map(W,BG); t∗EM1 ∧map(W,BG) Td,W )

' H•−χ(W )d(map(W,BG); t∗EM1)

t]−−→H•−χ(W )d(map(M1, BG); EM1).

Here the map s� exists by Lemma 39. The first equivalence follows from equation

(5.50), and the second one from Lemma 40.

5.5 Connections and conjectures

Having constructed the field-theory operation associated with a single cobordism in

Theorem 41, in this section we will discuss conjectures that would take us closer to

the construction of the Homological Conformal Field Theories we were referring to in

Conjecture 1. In particular, we will show how the homological conformal field-theory
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operations would easily arise from the existence of a map of spectra over Mor C+
2,∂

which restricts to the operations of Theorem 41 on fibers. In addition, we will briefly

discuss the connection of our conjectural field theories to Chataur and Menichi’s

[CM07] and Freed, Hopkins and Teleman’s [FHT07a] work.

While our construction of the map (5.53) is not natural enough to ensure that the

maps (5.53) for varying W fit together to give a map of spectra over Mor C+
2,∂, it is

natural to conjecture that with a sufficiently careful construction, this would be the

case. The following diagram displays the relevant spaces and maps. The triangles

at the bottom left and right hand corners of the diagram are pullback squares, and

the diagram (5.54) featuring in the construction of the field-theory operations of

Theorem 41 is the fiber over W ∈ Mor C+
2,∂ of the upper part of the central diamond.

Obj C+
2,∂(BG)

U

��

Mor C+
2,∂(BG)soo t //

s̄

{{xxxxxxxxxx
t̄

##GGGGGGGGGG

U

��

Obj C+
2,∂(BG)

U

��

s∗Obj C+
2,∂(BG)

pr0

ccGGGGGGGGGG

π0

##GGGGGGGGGG
t∗Obj C+

2,∂(BG)

pr1

;;xxxxxxxxxx

π1

{{xxxxxxxxxx

Obj C+
2,∂ Mor C+

2,∂
soo t // Obj C+

2,∂

(5.55)

The chief missing piece in the construction of the conjectural field theory opera-

tion over the space Mor C+
2,∂ is the identification of the spectrum Tg over Mor C+

2,∂(BG)

as the twisting associated with the pretransfer map induced by the map s̄ in diagram

(5.55). Moreover, while not strictly necessary for the construction of the opera-

tion, it would be important to identify the homotopy type of the spectrum Td over

Mor C+
2,∂(BG) as well. The following conjecture is a strengthening of Lemma 39.

Conjecture 42. The spectrum Tg over the space Mor C+
2,∂(BG) is a Costenoble–

Waner s∗Obj C+
2,∂(BG)-dual of SMor C+2,∂(BG).

As for the spectrum Td over Mor C+
2,∂(BG), according to Lemma 40, the restrictions

of Td to the fibers of the map

Mor C+
2,∂(BG)

U−→ Mor C+
2,∂,
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are trivial, but we do not expect Td to be trivial over the whole space Mor C+
2,∂(BG).

Let H be the virtual vector bundle over Mor C+
2,∂ whose fiber over a non-identity

morphism W is

χH∗(W,∂0W ; Rd) = −H1(W,∂0W ; Rd)

where χ indicates the difference of the even- and odd-dimensional parts of the graded

vector space H∗(W,∂0W ; Rd); the displayed equality then follows by the assumption

that every connected component of W has both incoming and outgoing boundary

components. Over the identity morphisms, we take H to be the zero bundle. The

discussions in [CM07], Section 11, and [FHT07a], Section 4, suggest the following

generalization of Lemma 40.

Conjecture 43. The spectrum T ′d over Mor C+
2,∂ is equivalent to SH

Mor C+2,∂
, so that

Td ' U∗SH
Mor C+2,∂

.

Assuming that Conjecture 42 holds, we can construct the field-theory operation

over Mor C+
2,∂ by a pull-push construction in the upper part of the central diamond in

diagram (5.55). More precisely, we get the following map (in the homotopy category

of R-modules over Mor C+
2,∂).

H•(s∗Obj C+
2,∂(BG); pr∗0E)

s̄�

−−→H•(Mor C+
2,∂(BG); s̄∗pr∗0E ∧Mor C+2,∂(BG) Tg)

' H•(Mor C+
2,∂(BG); s∗E ∧Mor C+2,∂(BG) Tg)

' H•(Mor C+
2,∂(BG); t∗E ∧Mor C+2,∂(BG) Td)

' H•(Mor C+
2,∂(BG); t∗E ∧Mor C+2,∂(BG) U

∗T ′d )

' H•(Mor C+
2,∂(BG); t∗E) ∧Mor C+2,∂

T ′d

' H•(Mor C+
2,∂(BG); t̄∗pr∗1E) ∧Mor C+2,∂

T ′d
t̄]−−→H•(t∗Obj C+

2,∂(BG); pr∗1E) ∧Mor C+2,∂
T ′d

(5.56)

Here the umkehr map s̄� exists by Conjecture 42. The second equivalence from the

top follows from equation (5.48), and the second equivalence from the bottom is a

consequence of the projection formula.
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We will now explain how the map (5.56) would give rise to the kind of oper-

ations one would expect from a Homological Conformal Field Theory. Let Mi =

(Mi, ai, τ̃Mi
,OMi

), i = 0, 1, be objects of C+
2,∂. Then under the equivalence of the ana-

logue of the equation (5.2) for C+
2,∂, the restriction of the diagram (5.55) from Mor C+

2,∂

to C+
2,∂(M0,M1) gives the diagram

map(M0, BG)

��

∐
[W ] EDiff+(W ; ∂W )

×Diff+(W ;∂W )map(W,BG)

s̄

||zzzzzzzz
t̄

""DDDDDDDD

��

soo t // map(M1, BG)

��

∐
[W ] BDiff+(W ; ∂W )

×map(M0, BG)

pr0

bbDDDDDDDDDDDD

π0

$$HHHHHHHHH

∐
[W ] BDiff+(W ; ∂W )

×map(M1, BG)

pr1

<<zzzzzzzzzzzz

π1

zzvvvvvvvvv

{M0}
∐

[W ] BDiff+(W ; ∂W )soo t // {M1}

(5.57)

and the restriction of the map (5.56) the map (in the homotopy category of R-modules

over
∐

[W ] BDiff+(W ; ∂W ))

H•
(∐

[W ]

BDiff+(W ; ∂W )×map(M0, BG); pr∗0EM0

)
→H•

(∐
[W ]

BDiff+(W ; ∂W )×map(M1, BG); pr∗1EM1

)
∧∐

[W ]BDiff+(W ;∂W ) T ′′d
(5.58)

where T ′′d denotes the pullback of T ′d to
∐

[W ] BDiff+(W ; ∂W ). Applying the functor

r!

(
− ∧∐

[W ]BDiff+(W ;∂W ) (T ′′d )−1
)
,

where r denotes the constant map to the one-point space, and using the projection

formula, we obtain a map

H•

(∐
[W ]

BDiff+(W ; ∂W )×map(M0, BG); pr∗0EM0 ∧(..) π
∗
0(T ′′d )−1

)
→H•

(∐
[W ]

BDiff+(W ; ∂W )×map(M0, BG); pr∗1EM1

)
.

(5.59)
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The domain of this map is equivalent to

H•

(∐
[W ]

BDiff+(W ; ∂W ); (T ′′d )−1
)
∧H•

(
map(M0, BG); EM0

)

while (pr1)] gives a map from the codomain to the R-module

H•(map(M1, BG); EM1).

Thus we get a map (in the homotopy category of R-modules)

H•

(∐
[W ]

BDiff+(W ; ∂W ); (T ′′d )−1
)
∧H•

(
map(M0, BG); EM0

)
→H•(map(M1, BG); EM1).

(5.60)

It is these maps for varying M0 and M1 that give the Homological Conformal Field

Theory operations we had in mind in Conjecture 1.

We will now comment briefly on the connection of the HCFT operation 5.60 to

the Chataur–Menichi string topology of BG; this will also be an opportunity for us to

discuss the twisting (T ′′d )−1 appearing as the coefficients of
∐

[W ] BDiff+(W ; ∂W ) in

5.60. In [CM07], given a field k and a cobordism W , Chataur and Menichi construct

HCFT operations

(detH1(W,∂0W ; Z))⊗d ⊗Z H∗(BDiff+(W ; ∂W ); k)⊗k H∗(map(∂0W,BG); k)

→H∗(map(∂10W,BG); k)
(5.61)

where the factor (detH1(W,∂0W ; Z))⊗d is to be thought of as having degree −dχ(W ).

In terms of universal R-orientations, these operations would correspond to a case

where R is the Eilenberg–Mac Lane spectrum Hk, and the map ε in diagram (5.46)

is zero. Thus such a universal orientation would simply correspond to a null homotopy

of the composite

Σ∞+BSO(2) ∧BG σ̄g−→ ko→ line•(R).

Recalling the definition of σ̄g, we see that a choice of an orientation of the vector

bundle ad(EG) over BG is enough to induce such a null homotopy. Notice that
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for G connected the vector bundle ad(EG) is always orientable, for then the ad-

joint representation of G factors through SO(d), but ad(EG) may fail to be ori-

entable in general. Indeed, Chataur and Menichi assume that G is connected in their

work.

Let us denote by χd the vector bundle

∐
[W ]

EDiff+(W ; ∂W )×Diff+(W ;∂W ) H1(W,∂0W ; Rd)→
∐
[W ]

BDiff+(W ; ∂W ),

and let us assume from now on that Conjecture 43 is correct. Then

(T ′′d )−1 = Σ∞∐
[W ]BDiff+(W ;∂W )S

χd∐
[W ](..)

.

It follows from [God07], Lemma 20 that χd is orientable, so that

(T ′′d )−1 ∧HZ

is a trivializable HZ-line bundle. A choice of a trivialization is equivalent to the

choice of an orientation for χd, and over a single component BDiff+(W ; ∂W ) of∐
[W ] BDiff+(W ; ∂W ), an orientation of χd corresponds to the choice of a genera-

tor for the Z-module (detH1(W,∂W ; Z))⊗d. Thus, with a universal Hk-orientation

of the type we discussed above, upon passing to homotopy groups, the map (5.60)

would give rise to a map as in (5.61), where the factor (detH1(W,∂W ; Z))⊗d encodes

a choice of trivialization of the spectrum (T ′′d )−1 ∧ HZ over BDiff+(W ; ∂W ), and

hence also of the spectrum (T ′′d )−1 ∧Hk over BDiff+(W ; ∂W ).

Having discussed the connection of our field-theory operations to Chataur and

Menichi’s string topology of BG, we will now briefly comment on their relationship

to Freed, Hopkins and Teleman’s field-theory operations [FHT07a]. The classifying

spectrum picg for geometric K-theory twistings considered by Freed, Hopkins and

Teleman admits a map to line•(K), and hence a universal orientation in the sense of

Freed, Hopkins and Teleman gives rise to a universal K-orientation. The definitions

of Freed, Hopkins and Teleman’s operations and ours are then parallel: the Freed–

Hopkins–Teleman operation associated with a cobordism W arises from a pull–push
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construction in the correspondence diagram

M∂0W
s←−MW

t−→M∂1W (5.62)

of moduli stacks of flat G-connections, while ours arises from a pull–push construction

in the diagram

map(∂0W,BG)
s←− map(W,BG)

t−→ map(∂1W,BG) (5.63)

obtained from diagram (5.62) by passing to classifying spaces of stacks. There is one

complication in that Freed, Hopkins and Teleman work with K-cohomology and use a

pretransfer map induced by the map t in the construction of their operation, while we

have worked homologically and use pretransfer map induced by the map s. However,

Poincaré duality for the stacks of (5.62) should help to bridge this gap.

We conclude by acknowledging two major omissions in the discussion of our field

theories. First, we have not said anything about the functoriality of our operations.

In terms of the map (5.56), the functoriality of the operations should be expressed

in terms of a compatibility relation between the pullbacks of the map (5.56) over

Mor C+
2,∂ under the three morphisms

Mor C+
2,∂s ×Obj C+2,∂ t

Mor C+
2,∂ → Mor C+

2,∂

given by composition and the projections to the two factors. We will not spell out the

details here. Second, field theories should be symmetric monoidal functors, and we

have not touched this aspect of our operations at all. A prerequisite for the discussion

of the monoidality of our field-theory operations would be a good understanding of

the sense in which the cobordism categories C+
2,∂ are symmetric monoidal categories.

It seems to us that the symmetric monoidal structure on the category C+
2,∂ should be

best expressed by an action of an E∞ operad on the spaces of objects and morphisms.

Indeed, thinking of RL as an open L-cube, the little L-cubes operad acts naturally

on Obj C+
2,L and Mor C+

2,L, and these actions are compatible as L goes to infinity. The

monoidality of our operations should then be expressed as a compatibility of the map

(5.56) with the E∞ action on Mor C+
2,∂. Again, we leave the details for future work.
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