INTRODUCTION TO TOPOLOGICAL K-THEORY

EXERCISE SESSION 6

May 10, 2016

Problem 1. Show that the canonical line bundle $\gamma^1(\mathbb{R}^n)$ over $\mathbb{R}P^n$ is nontrivial for all $1 \leq n \leq \infty$. *Hint:* $\mathbb{R}P^1$ is homeomorphic to S^1.

Problem 2. Recall that a space M is called an n-dimensional topological manifold if it is Hausdorff and every point in M has a neighbourhood homeomorphic to \mathbb{R}^n. Prove that the Grassmannians $\text{Gr}_k(\mathbb{R}^n)$ and $\text{Gr}_k(\mathbb{C}^n)$ are topological manifolds of dimensions $k(n-k)$ and $2k(n-k)$, respectively. *Hint:* For $V \in \text{Gr}_k(\mathbb{R}^n)$, consider the neighbourhood $U_V \subset \text{Gr}_k(\mathbb{F}^n)$ consisting of those $W \in \text{Gr}_k(\mathbb{F}^n)$ which surject onto V in the orthogonal projection of \mathbb{F}^n onto V. Construct a homeomorphism between U_V and the space of linear maps from V to V^\perp.

Recall from the previous exercise session that for each m and n, the map

$$
\perp : \text{Gr}_m(\mathbb{F}^{m+n}) \to \text{Gr}_n(\mathbb{F}^{m+n}), \quad V \mapsto V^\perp
$$

is a homeomorphism. Write i for the inclusion maps

$$
i : \text{Gr}_k(\mathbb{F}^n) \hookrightarrow \text{Gr}_k(\mathbb{F}^{n+q})$$

induced by the inclusions $\mathbb{F}^n \hookrightarrow \mathbb{F}^{n+q}$ and j for the maps

$$
j : \text{Gr}_k(\mathbb{F}^n) \longrightarrow \text{Gr}_{k+q}(\mathbb{F}^{n+q}),$$

sending $V \in \text{Gr}_k(\mathbb{F}^n)$ to the subspace $V \oplus \mathbb{F}^q \subset \mathbb{F}^n \oplus \mathbb{F}^q = \mathbb{F}^{n+q}$.

Problem 3. Define the (real) **bundle dimension** of a space B to be the smallest integer $k \geq 0$ such that composition with the inclusion $\text{Gr}_m(\mathbb{R}^{m+n}) \hookrightarrow \text{Gr}_m(\mathbb{R}^\infty)$ induces a bijection $[B, \text{Gr}_m(\mathbb{R}^{m+n})] \to [B, \text{Gr}_m(\mathbb{R}^\infty)]$ for all $m, n \geq k$. If there is no such k, we say that the bundle dimension of B is infinite. In what follows, let B be a space with finite bundle dimension k.

(a) Show that any numerable vector bundle on B admits a k-dimensional complement.

(b) Show that the inclusion $i : \text{Gr}_k(\mathbb{R}^{2k}) \hookrightarrow \text{Gr}_k(\mathbb{R}^{k+n})$ induces a bijection

$$[B, \text{Gr}_k(\mathbb{R}^{2k})] \overset{\approx}{\longrightarrow} [B, \text{Gr}_k(\mathbb{R}^{k+n})]$$

for all $n \geq k$.

(c) Show that the map $j : \text{Gr}_k(\mathbb{R}^{2k}) \to \text{Gr}_n(\mathbb{R}^{k+n})$ induces a bijection

$$[B, \text{Gr}_k(\mathbb{R}^{2k})] \overset{\approx}{\longrightarrow} [B, \text{Gr}_n(\mathbb{R}^{k+n})]$$

for all $n \geq k$. *Hint:* \perp.

(d) Show that any numerable vector bundle ξ of dimension $n \geq k$ over B splits as a direct sum $\xi \approx \eta \oplus \varepsilon^{n-k}$ for some k-dimensional numerable vector bundle η, and that such an η is unique up to isomorphism.

(e) Show that if ξ and ζ are two vector bundles of dimension $\geq k$ over B such that $\xi \oplus \varepsilon^n$ and $\zeta \oplus \varepsilon^n$ are isomorphic for some $n \geq 0$, then ξ and ζ are isomorphic.