Clutching construction (cont.)

Last time, we proved

Cor 1: Sp. \overline{X} is a compact Hausdorff space.

Then the clutching construction gives bijections

$$[X, \text{GL}_n \mathbb{C}] \xrightarrow{\cong} \text{Vect}_\mathbb{C}^n (S\overline{X})$$

$$[X, \text{GL}_n \mathbb{R}] \xrightarrow{\cong} \text{Vect}_\mathbb{R}^n (S\overline{X})$$

Rh 2: The Gram-Schmidt process gives deformation retractions from

$$\begin{cases} \text{GL}_n \mathbb{C} \to \mathcal{U}(n) < \text{GL}_n \mathbb{C} \\ \text{GL}_n \mathbb{R} \to \mathcal{O}(n) < \text{GL}_n \mathbb{R} \end{cases}$$

So in the above we could replace $\text{GL}_n \mathbb{C}$ and $\text{GL}_n \mathbb{R}$ by $\mathcal{U}(n)$ and $\mathcal{O}(n)$, respectively.

The advantage is that $\mathcal{U}(n)$ and $\mathcal{O}(n)$ are smaller spaces. For example,

- $\mathcal{U}(1) = S^1 \subset \mathbb{C}$
- $\mathcal{O}(1) = \{\pm 1\} \subset \mathbb{R}$
- $\mathcal{O}(2)$ fits into a short exact sequence
 $$1 \to \mathcal{SO}(2) \to \mathcal{O}(2) \xrightarrow{\det} \{\pm 1\} \to 1$$
 and $\mathcal{SO}(2) \cong S^1 \subset \mathbb{R}^2$.
Eq 3: Let us analyze the canonical line bundle \(y: \mathbb{P}^1 \rightarrow \mathbb{P}^1 \) and its dual

\[
H = (y)^* = \text{Hom}(\mathfrak{z}, \mathfrak{c}) \rightarrow \mathbb{P}^1.
\]

Recall that \(\mathbb{P}^1 \cong \mathbb{C}^2 \setminus \{ 0 \} / \sim \), where \(\sim \) identifies \((z_0, z_1)\) and \(\lambda (z_0, z_1)\) for \(\lambda \in \mathbb{C} \setminus \{ 0 \}\).
Write \([z_0:z_1]\) ("homogeneous coordinates") for the equivalence class of \((z_0, z_1)\).

The map

\[
\mathbb{P}^1 \quad \xrightarrow{\sim} \quad \mathbb{S}^2 = \mathbb{C} \cup \{ \infty \} \quad \text("Riemann sphere")
\]

\[
[z_0:z_1] \quad \xmapsto{\sim} \quad \frac{z_0}{z_1}
\]

is a homeomorphism, and we use it to identify \(\mathbb{P}^1 \) and \(\mathbb{S}^2 \). Let

\[
D_0^2 = \{ z \in \mathbb{S}^2 \mid |z| \leq 1 \}
\]

\[
D_\infty^2 = \{ z \in \mathbb{S}^2 \mid |z| > 1 \}
\]

(where \(|1| = \infty \)). Then \(D_0^2 \) and \(D_\infty^2 \) are homeomorphic to \(\mathbb{D}^2 \), \(D_0^2 \cap D_\infty^2 = S^1 \), and \(D_0^2 \cup D_\infty^2 = \mathbb{S}^2 \). In homogeneous coordinates,

\[
D_0^2 \ni z \quad \mapsto \quad [z:1] \in \mathbb{P}^1
\]

\[
D_\infty^2 \ni z \quad \mapsto \quad [1:z^{-1}] \in \mathbb{P}^1.
\]
We have trivializations
\[\phi : D_0 \cong D_0 \times C \Rightarrow \varepsilon_0 \]
\[(z, 2(z, 1)) \mapsto (z, 2) \]
\[\phi : D_\infty \cong D_\infty \times C \Rightarrow \varepsilon_\infty \]
\[(z, \lambda(z, z^{-1})) \mapsto (z, \lambda) \]

Then
\[S^1 \times C \cong \phi^* \times (z, 2(z, 1)) \]
\[S^1 \times C \cong \phi^* \times (z, \lambda(z, z^{-1})) \]

So
\[\phi \cong \varepsilon_0 \cup \varepsilon_\infty \text{ for } \phi : S^1 \to GL_2 C, z \mapsto z \]

It follows by Rk X.4.(iii) that
\[H \cong \varepsilon_0 \cup \varepsilon_\infty \text{ for } \psi : S^1 \to GL_2 C, z \mapsto z \]

Now by Rk X.4, the sum \(H \oplus H \) has clutching function
\[\phi_1 : S^1 \to GL_2 C, z \mapsto \left(\begin{array}{cc} z & 0 \\ 0 & \bar{z} \end{array} \right) \]
while \(H \oplus H \) has clutching function
\[\phi_2 : S^1 \to GL_2 C, z \mapsto \left(\begin{array}{cc} z^{-2} & 0 \\ 0 & 1 \end{array} \right) \]

Since \(GL_2 C \) is path connected, we can
Find \(\alpha : I \to G \otimes \mathbb{C} \) s.t. \(\alpha(0) = (0^1) \) and \(\alpha(1) = (0^0) \).

Now the map

\[
S^1 \times I \longrightarrow G \otimes \mathbb{C} \\
(z, t) \longmapsto \begin{pmatrix} z^t \cdot 0 & \alpha(t) \end{pmatrix} \begin{pmatrix} 0 & z^{-1} \end{pmatrix} \alpha(t)
\]

is a homotopy from \(\phi_1 \) to \(\phi_2 \). Thus \(H^0 \otimes \mathbb{C} \cong H^0 \otimes \mathbb{C} \) as v.b.'s over \(\mathbb{C}P^1 \).

V-theory

So far, our vector bundles have been of constant dimension over the whole base space. We would now like to generalize slightly to allow vector bundles where the fibres may have different dimensions. From now we adopt the following definition.

Def 4: An \(F \)-vector bundle is a map \(p : \Sigma \longrightarrow \mathbb{B} \) together with an \(F \)-vector space structure on each fibre \(\Sigma_b = p^{-1}(b), \ b \in \mathbb{B} \), s.t. the following local triviality condition is satisfied: for each \(b_0 \in \mathbb{B} \), there exists a neighbourhood \(\mathcal{U} \) of \(b_0 \) s.t. there exists an \(n \in \mathbb{Z}_{\geq 0} \) and a homeomorphism

\[
h : \Sigma \cap \mathcal{U} = p^{-1}(\mathcal{U}) \longrightarrow \mathcal{U} \times \mathbb{F}^n
\]

which, for each \(b \in \mathcal{U} \), restricts to a linear isomorphism \(\Sigma_b \cong \{b\} \times \mathbb{F}^n \).
Notice that the only change w.r.t. the previous definition is that we no longer insist on \(n \) being the same for all local trivializations. By an \(n \)-dimensional v.b., we continue to mean a v.b. \(\mathcal{E} \to B \) with \(\dim(\mathcal{E}_b) = n \) for all \(b \in B \), and these (for varying values of \(n \)) are precisely the v.b.'s in the previous sense.

So, \(\mathcal{E} \to B \) is a v.b. (in the sense of Def. 4).

Then the function

\[
\begin{array}{ccc}
B & \to & \mathbb{Z}_{\geq 0} \\
\ell_0 & \mapsto & \dim(\mathcal{E}_{\ell_0})
\end{array}
\]

is locally constant and hence continuous. Thus the subset

\[
B_n = \{ b \in B \mid \dim(\mathcal{E}_b) = n \} \subset B
\]

is both open and closed for all \(n \). We have \(B = \bigsqcup_{n \geq 0} B_n \) (as a space), and \(\mathcal{E} \restriction B_n \) is an \(n \)-dim' v.b., and hence a v.b. in the previous sense.

All our work so far generalizes to v.b.'s in the sense of Def 4.

\(K \)-theory as an abelian group

Write \(\text{Vect}_F(\mathcal{E}) \) for the set of isomorphism classes of numerable \(F \)-v.b.'s over \(\mathcal{E} \).
Notice first that \(\oplus \) makes \(\text{Vect}_{\mathbb{F}}(\mathbb{B}) \) into a commutative monoid (i.e., a set equipped with a binary operation which is associative, commutative and has a neutral element). \(\text{Vect}_{\mathbb{F}}(\mathbb{B}) \) fails to be an abelian group, however, since vector bundles do not have inverses w.r.t. \(\oplus \).

Abelian groups are easier to understand than commutative monoids, so we would like to turn \(\text{Vect}_{\mathbb{F}}(\mathbb{B}) \) into an abelian group by formally adjoining additive inverses.

Def 5: \(\mathbb{G} \cdot \mathbb{M} = (\mathbb{M}, \cdot) \) is a commutative monoid.

The **Grothendieck group** of \(\mathbb{M} \) is the abelian group \(\text{Gr}(\mathbb{M}) \) constructed as follows:

- as a set, \(\text{Gr}(\mathbb{M}) = \mathbb{M} \times \mathbb{M}/\sim \), where
 \[
 (x,y) \sim (x',y') \iff \exists z \in \mathbb{M} \text{ s.t. } x + y' + z = x' + y + z
 \]
- the group structure on \(\text{Gr}(\mathbb{M}) \) is given by
 \[
 [(x,y)] + [(x',y')] = [(x+x', y+y')]
 \]

(One should think of \([(x,y)] \) as \(x - y \).)

Exc: Check that addition on \(\text{Gr}(\mathbb{M}) \) is well defined and makes \(\text{Gr}(\mathbb{M}) \) into an abelian group with identity element \([0,0] \) and \(-[(x,y)] = [(y,x)] \).

Notice that the construction of \(\text{Gr}(\mathbb{M}) \) generalizes the usual construction of integers from natural numbers, so we have \(\text{Gr}(\mathbb{N},+) = (\mathbb{Z},+) \). (Check this if you haven't seen it!)
We have a homomorphism of commutative monoids
\[i : M \rightarrow \text{Gr}(M) \]
\[x \mapsto [(x, 0)] \]
(not necessarily injective). This has the following universal property:

Prop 6: \(A \) is an abelian group, and let \(f : M \rightarrow A \) be a homomorphism of commutative monoids. Then there exists a unique homomorphism \(F : \text{Gr}(M) \rightarrow A \) of abelian groups s.t. \(f \circ i = F \cdot \).

\[\begin{array}{ccc}
M & \xrightarrow{i} & \text{Gr}(M) \\
\downarrow f & & \downarrow F \\
A & & A
\end{array} \]

Sketch of Pf: We have \([(x, y)] = i(x) - i(y) \), so we must define
\[F([(x, y)]) = f(x) - f(y), \]
Now check that this definition gives a well-defined homomorphism. □

Interpretation: The homomorphism \(i : M \rightarrow \text{Gr}(M) \) is the "best" homomorphism from \(M \) to an abelian group.

Rem: The universal property characterizes \(\text{Gr}(M) \) uniquely up to unique isomorphism: if \(j : M \rightarrow G \) is another monoid homomorphism into an abelian
group satisfying the universal property, then the maps
$\mathbf{I}: C \to \text{Gr}(M)$ and $\mathbf{J}: \text{Gr}(M) \to C$, induced by
i and j are inverse isomorphisms. (Check this!)

Def 8. For X a compact Hausdorff space, we
define the K^f-theory of X to be

$$K^f(X) = \text{Gr}(\text{Vect}_{K^f}(X), \oplus).$$

Notation: One usually writes K or K^0 for K_C
(complex K-theory) and KO for K^{ir} (real
K-theory).

We write $[\mathbf{g}]$ (or even just \mathbf{g}) for the
element of $K^f(X)$ defined by a v.b.o. $\mathbf{g} \to X$.
Then in $K^f(X)$, we have $[\mathbf{g}] + [\mathbf{s}] = [\mathbf{g} \oplus \mathbf{s}]$
for v.b.o $\mathbf{g}, \mathbf{s} \to X$.

Ex: $(\text{Vect}_{K^f}(\mathbb{R}^+), \oplus) \cong (\mathbb{N}, +)$, so $K^f(\mathbb{R}^+) = \mathbb{Z}$.